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Summary 
 
Challenged by the presence of strong anisotropy and velocity reversals in the near surface, we apply 

structurally constrained anisotropic multi-wave inversion (MWI), over 1200 km2 of OBC data offshore 

Abu Dhabi. MWI aims to simultaneously invert the P-wave first breaks (FB), the ground roll dispersion 
curves (DC) and the vertical two-way times (VTWT) of the main interfaces. In this study, MWI is 

extended to invert for the Thomsen’s anisotropic parameter  that is constrained by the FB and the 

VTWT. The high resolution Vp and  obtained from MWI greatly contribute to the velocity model 
building. Additionally, geomechanical parameters like the uniaxial compressive strength (UCS) are also 

derived from the combination of Vp and Vs. 

We highlight the importance of proper preconditioning of the DC and FB inputs using data mining tools 
when applying the method to a large production dataset. Machine learning (ML) is used to better account 

for the vertical and horizontal geological variability of the survey in picking the phase velocity, while 

data mining tools allow interactive QC and editing of the FB picks on large data sets. 
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Introduction 
The complexity of the Middle East near-surface has led the oil and gas industry to seek advanced and
innovative solutions to overcome this challenge. Properly imaging the near surface is very important 
in velocity model building as shallow velocity errors propagate into deeper layers. The case study
described here concerns a major oilfield offshore Abu Dhabi. A 3D 4C OBC seismic dataset was 
acquired in 2014 in a very shallow water environment. The near surface is characterized by sharp
velocity reversals and strong anisotropy. 
Conventional methods have consistently failed to properly image the very near subsurface. First break 
(FB) tomography is not able to resolve the subsurface with multiple shallow reversals, as it cannot 
discriminate between depth and velocity to satisfy arrival times. Reflection tomography is not 
applicable either because of the lack of offsets in the very shallow and the weak signal-to-noise ratio 
(SNR). In this study, we use the structurally constrained multi-wave inversion (MWI) approach 
proposed by Bardainne (2018) to solve the complexity of the very near subsurface. MWI is a 
simultaneous inversion of P-wave FB, ground roll dispersion curves (DC), and Vertical Two-Way 
Times (VTWT) of the main interfaces. These complementary and redundant sources of information 
feed a multi-parameter joint inversion algorithm, which is better determined than a sequential 
inversion of the same inputs. MWI provides high resolution layered velocity models, structurally 
consistent with the reflectivity. It also has the potential to detect velocity reversals when slope breaks 
are picked on the fundamental mode of the DC (white arrow in Figure 1b). Masclet et al., (2018) have 
shown that efficient machine learning (ML) driven analysis of the DC is crucial to stabilize the 
inversion. In this study, we further extend the use of big data tools to the selection of FB picks. 
Another novelty is that the Thomsen’s anisotropic parameter  is also inverted by MWI, mainly 
constrained by the combination of FB with VTWT.
Besides the recovery of Vp, Vs and  parameters and improved imaging, we also illustrate an added 
value of MWI through the estimation of geomechanical uniaxial compressive strength (also called 
unconfined compressive stress, or UCS). 

Method 
The VTWT are picked along two main Tertiary reflectors on a pre-stack time migration (PSTM) 
stack, namely Lower Fars and Dammam horizons (in black in Figure 4). The VTWT are key to 
constrain the structure and to recover , hence the method’s name ‘structurally constrained anisotropic 
MWI’.  is known to be determined by the ratio of the horizontal P velocity, coming from the FB, 
over the vertical P velocity. In MWI, the average vertical velocity at an interface is equal to its depth 
over the VTWT. The MWI process jointly adjusts the velocity and the depth of the horizons to satisfy 
the VTWT and therefore constrains the structure. This new ability of MWI to invert for  allows for 
consistency between the VTWT and the FB arrival times in the presence of anisotropy. 

The ground roll DC were picked on the geophone component which showed better SNR at low 
frequencies than the hydrophone component. The data were sorted by cross-spread, and densified to a 
6.25 x 6.25m bin size to ease the picking at higher frequencies. Only the fundamental mode of the DC 
was picked, the higher order harmonic modes are not yet being modelled in the scheme. To constrain 
the picking to a unique mode, velocity corridors representative of geological areas were designed 
based on unsupervised K-mean classification of the DC as recommended by Masclet et al., (2018). 

Practical aspects 
a) DC clustering per frequency:

The low frequencies of the surface waves propagate deeper than the high frequencies. The different 
frequencies are hence representative of different geological layers. By clustering on different 
frequency ranges, we improve detection of geological changes with depth as displayed by Figure 1c-e. 
Moreover, it guides the picking to focus on the strong curvature of the DC at the very low frequencies. 
The latter are very important for MWI because they cover the whole penetration depth. To find the 
optimum number of classes for each frequency range, we start calculating self-organizing maps 
(SOM) on DC. SOM is a dimensionality reduction method preserving topological properties of the 
input space through competitive learning. Figure 1a displays the 2D-SOM for the low frequency 
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range, showing the 4 main classes in Figure 1c. The connectivity between the 256 classes can be 
visualized with the colored honeycomb in Figure 1a. The classes in white are intermediate ones and 
form the borders of the chosen classes. The colors are fairly homogeneous inside each class, indicating
we have chosen the correct number of classes. 

Figure 1: (a) is the result of a SOM from the lowest frequency range. (b) is an example of a DC where 
the picked velocity is delineated by the white dashed line. (c-e) are clustering maps over the survey 
using different frequency ranges of the DC (from low to high frequencies). 

We illustrate in Figure 2 that the use of the clustering per frequency to guide the velocity corridors 
prevent us from picking the velocity reversals highlighted by the red ellipses. Although not shown 
here, we also observed that this ML strategy stabilizes the picking at the low and high frequency ends. 

Figure 2: Scholte phase velocity map of the whole survey picked at the frequency of 8 Hz derived (a) 
without the help of ML and (b) when designing velocity corridors guided by a clustering by frequency. 
Note the anomalous velocity reversals in the red ellipses in (a).  

b) FB editing:
The so-called “Christmas tree effect”, synonymous with a decrease in FB velocity with offset, is a 
well-known difficulty when picking the FB. This behavior occurs when there are alternating high and 
low velocity layers as described by Sun and Zhang, (2013). The MWI algorithm computes the P-wave 
travel-times of the refracted first arrivals using a finite difference Eikonal solver. The modelled first 
arrivals are often inconsistent with the picked FB because the amplitude of the FB is too weak to be 
picked, and the downward phase is picked instead. This inconsistency introduces a velocity bias in the 
tomographic result, as illustrated by Sun and Zhang (2013), which is also expected for MWI. To avoid 
the velocity bias related to the Christmas tree effect in our solution, we decided to remove the picks 
that showed a negative velocity derivative with offset. Our big data infrastructure allows for the 
efficient control of seismic attributes in all domains, and proved very useful to QC and edit the FB 
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picks for large datasets. We designed a velocity corridor in the velocity/offset domain (Figure 3a-b) to 
discard the picks representative of a velocity reversal, especially present at near and far offsets. Figure 
3c and 3d show how bias was corrected and sharp high velocity anomalies were removed with this FB
editing. Figure 3e and 3f display an example of FB velocity distribution inside receiver gathers before 
and after editing the picks. 

Figure 3: Visual QCs of the FB picks before editing in the left column, and after polygon selection (in 
purple in a,b) in the right column. (a,b) FB pick velocity is displayed with respect to the offset class. 
(c,d) Shot map of the maximum FB velocity per shot. (e,f) FB pick velocity distribution inside two 
receiver gathers. 

MWI results 
Figure 4 shows the inverted MWI models and their comparison with a sonic log. The MWI models 
conform to the general structure given by the two VTWT horizons (in black). MWI confirms the 
presence of high anisotropy as  reaches a maximum of 27% (Figure 4g). The P and S velocity 
profiles follow the sonic trends accurately. MWI recovered the three velocity reversals (white arrows 
on velocity profiles), and a Vp/Vs reversal (red arrow).  
The PSDM stacks in the starting models and the MWI models are shown in Figure 5. We observe an 
uplift in continuity and focusing of the reflectors inside the green ellipses.  

The UCS parameter is often used in civil engineering as it is a measure of the layer stiffness. This can 
be of interest to evaluate the drilling risks. Here the UCS was derived from the MWI Vp and Vs 
parameters (Figure 6a) with the formula: UCS (Mpa) = 0.055 E0.6275, where E is the Young Modulus. 
By applying the geotechnical classification based on the range of the UCS values (Figure 6b), the 
presence of a weak layer can be detected (red arrow). This is also the layer that shows a reversal of the 
Vp/Vs ratio. Another stiffness reversal was observed between the black horizons (white arrow). 

Conclusion 
MWI is a multi-parameter inversion method which offers a solution for near-surface velocity model 
building in the presence of shallow velocity reversals and significant anisotropy. Machine learning 
and big data tools allow efficient QC and editing of the different inputs, crucial to stabilize the 
inversion. Our MWI application over a complete 1200 km2 area allowed us to improve the overall 
imaging of the very near surface, to provide anisotropy estimation, a good match to the wells and rock 
property information. 
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Figure 4: Inverted MWI models (a,c,e,g) and comparison with their respective log (b,d,f). The black 
dashed line indicates the crossline location of the well. The inline location of the well is offset from 
this section. The grey area is not inverted by MWI. Note on the velocity profiles the detailed velocity 
reversals found by MWI (white arrows). 

Figure 5: PSDM stack using the starting model (a) and the MWI model (b). 

Figure 6: (a) UCS parameter derived from the Vp and Vs MWI parameters. (b) 3 class UCS model 
inferred from the range of UCS values, to clearly show the weak and the strong layers. 

Acknowledgments 
We would like to thank ADNOC Offshore for permission to publish these results. 

References 
Bardainne, T. [2018] Joint inversion of refracted P-waves, Surface Waves and Reflectivity. 80th EAGE 
Conference & Exhibition 
Masclet, S., Bardainne, T., Massart, V. and Prigent, H. [2019] Near surface characterization in 
Southern Oman: Multi-Wave Inversion guided by Machine Learning. 81th EAGE Conference & 
Exhibition 
Sun, M. and Zhang, J. [2013] Understanding of the first arrivals in the shape of a Christmas tree. SEG 
International Exposition and Annual Meeting, Extended Abstracts. 


