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Summary 
 

As the key step in subsalt imaging, conventional salt model 

building has typically relied on manual interpretation of the 

salt geometry, which proves to be difficult for resolving 

complex salt models. As a result, subsalt imaging has been 

approaching a plateau in the last few years, largely because 

of our inability to improve the accuracy of salt models. Fast 

forward to today, where the recent success of using full-

waveform inversion (FWI) to automatically update salt 

models and significantly improve subsalt images has 

opened the door to a new era of subsalt imaging. As FWI 

for salt model updates prefers data with good low 

frequencies, long offsets, and full azimuth, sparse nodes for 

velocity surveys were proposed to serve as an economic yet 

suitable acquisition solution for large-scale subsalt 

exploration. Because of FWI’s prior inability to update salt 

models for field data, the feasibility of sparse nodes for 

velocity surveys was previously only studied on synthetic 

data, from which the conclusions might not be immediately 

applicable to field data. Using a recently-developed FWI 

algorithm that proves to work on salt in field data, and by 

decimating the densely-acquired Atlantis ocean bottom 

node (OBN) data, we studied the impact of sparse node 

data for FWI salt model updates. Based on the 

understanding gained from this, we further proposed and 

validated methods to improve FWI results with sparse 

nodes for velocity data. 
 

Introduction 
 

Subsalt imaging underwent a step change about fifteen 

years ago when the industry transitioned from narrow-

azimuth (NAZ) data to wide-azimuth (WAZ) data 

(Threadgold et al., 2006; Michell et al., 2006) and from 

ray-based imaging algorithms, such as Kirchhoff and beam 

migration, to wave-equation-based imaging algorithms, 

such as reverse time migration (RTM) (Farmer et al., 2006; 

Zhang et al., 2007). Since then, incremental progress has 

been made in subsalt imaging with the availability of multi-

WAZ or full-azimuth (FAZ) data (Moldoveanu and 

Kapoor, 2009; Mandroux et al., 2013) of increased 

illumination power, more accurate model formulations and 

derivations of sediment velocity (e.g., tilted traverse 

anisotropy or tilted orthorhombic anisotropy) (Zhang and 

Zhang, 2008; Han and Xu, 2012), and more advanced 

imaging algorithms (e.g., least-squares RTM) (Wong et al., 

2011; Dai et al., 2013; Wang et al., 2016). However, salt 

model building, the key step for subsalt imaging, has 

remained dependent on manual interpretation of the salt 

geometry, which works well in areas with simple salt 

bodies but is very challenging in complex areas. The 

improvements to salt body images brought by FAZ data 

with better illumination, better sediment models, and better 

imaging algorithms do help manual salt interpretation to 

some extent, but cannot solve the fundamental dilemma in 

manual salt model building – a good image of the salt body 

is required for a good salt model by manual interpretation, 

while a good salt model is required to provide a good 

image of the salt body in the first place. Other factors such 

as weak or diminished impedance contrast at the salt 

boundaries and dirty salt with variable velocities further 

hinder the manual salt model building process. For these 

reasons, manual salt model building has been the 

bottleneck for improvements in subsalt imaging, and even 

more so in recent years. The industry has recognized this 

issue and has been looking for better and more automatic 

salt model building methods for years, but with limited 

success. With recent breakthroughs in the algorithm, FWI 

has demonstrated the ability to automatically update salt 

models and bring a step change to subsalt images in some 

of the most complex areas (Shen et al., 2017; Michell et al., 

2017; Zhang et al., 2018; Wang et al., 2019). With more 

demonstrated successes, automatic salt model building 

using FWI has opened the door to a new paradigm of 

subsalt imaging. 
 

Successful FWI applications in salt environments and other 

complex geologic settings require data with good low 

frequencies to avoid cycle skipping, and long offsets and 

FAZ coverage to fully illuminate the target areas with 

diving waves. OBN data seems to be the natural choice 

because of the low ambient noise level at the ocean bottom 

and the stationary receiver patch that allows for recording 

long-offset and FAZ data more efficiently. However, it is 

still financially challenging to acquire OBN data for large-

scale exploration purposes using the conventional layout of 

dense node and shot spacing. For this reason, sparse nodes 

for velocity surveys were recently proposed with the 

understanding that FWI for salt model updates can use 

much sparser data than required for imaging (Dellinger et 

al., 2017). Because of FWI’s prior inability to update salt in 

field data, the feasibility of sparse nodes for velocity 

surveys was previously only studied on synthetic data, 

which often uses the same modeling engine to generate the 

target “field data” (an inverse crime) and cannot truly 

simulate the situation in a field data case (e.g., seismic 

amplitude mismatch between synthetic data and field data, 

random and coherent background noise). By using the 

recently-developed Time-Lag FWI algorithm (Zhang et al., 

2018; Wang et al., 2019) that is proven to work on salt in 

field data, and by decimating the densely-acquired Atlantis 

OBN data, we simulated different scenarios of node and 

shot spacing to understand the key elements of sparse data 

for salt model updates and explored potential ways to 
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Sparse nodes for velocity 

further improve FWI results with sparse nodes for velocity 

data.  
 

Node and shot decimation testing 
 

Since nodes and shots have different coverage, datum 

surfaces, and spacing/density in OBN case, the effects of 

node and shot decimation in FWI are not interchangeable. 

In order to understand the impact of node and shot spacing 

respectively, two sets of control tests were performed. In 

the first set of tests, the shot spacing of the FWI input was 

fixed at ×  m, while the node spacing increased 

gradually from ×  m to ×  m. As shown in 

Figure 1, when the node spacing increased from ×  

m to ×  m, the inverted model from 4 Hz FWI 

became noisier and overall the inversion converged more 

slowly, especially in complex areas, such as the cave 

marked by the white circles. However, the grand-scale 

images were comparable for node spacing ≤1200 m, which 

indicates the low wavenumber kinematic update is similar 

regardless of the noise level in the model. When node 

spacing further increased to ×  m, the image 

degraded appreciably compared to other scenarios with 

smaller node spacing, especially in the complex zone with 

low S/N, indicated by the blue circles. 

Figure 1: Node decimation test: 4 Hz FWI model with a fixed shot spacing of ×  m and the corresponding RTM image for different 

node spacing: (a)/(b) FWI initial model and the corresponding RTM image. (c)/(d) ×  m; (e)/(f) ×  m; and (g)/(h) ×

m. White circles mark the inverted cave in the model while blue circles indicate the low S/N region on the image. Green arrows indicate steeply 

dipping events. 

Figure 2: Shot decimation test: 4 Hz FWI model with a fixed node spacing of ×  m and the corresponding RTM image for different 

shot spacing: (a)/(b) ×  m; (c)/(d) ×  m; (e)/(f) ×  m; and (g)/(h) ×  m. White circles mark the inverted cave in the 

model while blue circles indicate the low S/N region on the image. Green arrows indicate steeply dipping events. 
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Sparse nodes for velocity 

Similar to the node decimation testing, we performed the 

second set of control tests to understand the impact of shot 

spacing. We observed that, with a fixed node spacing of 

×  m, the inverted models became increasingly 

noisier when the shot spacing increased from ×  m 

to ×  m. As a result, the migrated images 

deteriorated (Figure 2). The image degradation was most 

obvious in areas where the FWI models became very noisy. 
 

From both sets of control tests, as node and/or shot 

sampling became increasingly sparse, the region that 

degraded first was the area with poor S/N, while the steeply 

dipping events, even the ones close to the water bottom, 

were well preserved. Does this mean the main culprit for 

the degradation of the model and image is the reduced S/N 

from the reduced total number of traces? Is spatial aliasing 

less of a problem? In the next section, we try to answer 

these questions with a synthetic study. 
 

Spatial aliasing or S/N? 
 

Mimicking the noise in field data and incorporating it into 

synthetic data is not a trivial process. However, we can 

exactly replicate the spatial sampling of the field data with 

synthetic modeling. The 11 Hz FWI model (Figure 3a) 

from non-decimated input was used as a “true” model to 

generate synthetic data. Two FWI tests using the same 

inversion scheme but different inputs, one with field data 

and the other with synthetic data (Figure 4), were 

performed. Both inputs were very sparse with a node 

spacing of ×  m and a shot spacing of ×  

m. After running FWI up to 4 Hz, the inverted model 

(Figure 3c) from the sparse field data was very noisy and 

degraded the subsalt image (Figure 3d). Conversely, FWI 

using the synthetic data was able to recover the “true” 

model almost perfectly (Figure 3e), and the corresponding 

RTM image was almost identical to the one from the “true” 

model. However, after adding random noise, which was 

20% of the synthetic RMS amplitude, to the synthetic data 

(Figure 4c), FWI using this input failed to recover the true 

model. The inverted model was even noisier than in the 

field data case. 
 

Though the pure synthetic case without added noise is an 

inverse crime, the conclusion on the impact of spatial 

sampling is still valid. The discrepancy between the field 

data case and the case of synthetic data without noise 

demonstrates that the degradation of the model and image 

from sparse field data is not due to spatial aliasing but 

mainly because of the reduced S/N from the reduced total 

number of traces. The result from synthetic data with 

random noise added further confirms the impact of reduced 

S/N. “Spatial aliasing” can be significant if it is severe, but 

in the normal range of node/shot spacing discussed here, 

the first order effect is S/N. 
 

In addition, under such a sparse setting ( ×  m 

node spacing and ×  m shot spacing), the nearly-

perfectly inverted model from FWI using synthetic input 

 

Figure 4: A sample node gather of one shot line for (a) field data; 

(b) synthetic data; and (c) synthetic data plus 20% random noise. 

Figure 3: (a) is the “true” velocity model and (b) is the corresponding RTM image. 4 Hz FWI model with a node spacing of ×  m and 

a shot spacing of ×  m, and the corresponding RTM image using different input data: (c)/(d) field data; (e)/(f) synthetic data; and (g)/(h) 

synthetic data with 20% random noise. White circles mark the inverted cave in the model while blue circles indicate the low S/N region on the 

image. Green arrows indicate steeply dipping events. 
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Sparse nodes for velocity 

indicates that FWI is able to handle sparse spatial sampling 

in a way similar to least-squares migration. 
 

How to further improve FWI results with sparse input? 
 

From both the field data and synthetic studies, we learned 

that the impact of sparse node and shot spacing on FWI is 

mainly from the increased noise level in the inverted model 

due to the reduced S/N as a result of the sparse data. The 

next question we tried to answer is how to mitigate this 

effect and improve the FWI result. Our strategies were as 

follows: 

 Run FWI to higher frequencies, because higher 

frequency data have higher S/N  

 Apply regularization to suppress noise during inversion 
 

Although the model from FWI using sparse input became 

noisier from 4 Hz to 8 Hz, as shown in Figure 5, the benefit 

of higher frequency inversion is clear on the image thanks 

to the improved S/N of higher frequency data and the 

increased resolution of the inverted salt model. 

Furthermore, a newly-developed regularization in FWI 

(Zhang, personal communication, 2019) was able to 

suppress the noise in the model, improve the model 

conformity, and preserve the salt velocity and salt 

boundary. This cleaner model led to a further improved 

image, especially in the low S/N area. However, the model 

and image are still not as good as those from FWI with 

non-decimated input. The difference indicates that accurate 

reservoir imaging in development fields may still require a 

node survey with dense node and shot spacing. 
 

Discussion and conclusion 
 

The decimation study using Atlantis OBN data confirms 

sparse nodes for velocity data can provide an economic yet 

effective solution for automatic model building using FWI 

in complex salt areas for exploration purposes. For a survey 

with the required offsets and node/shot coverage to 

adequately illuminate the target area with diving waves, an 

acquisition scheme with ×  m node spacing and 

×  m shot spacing is deemed reasonable for FWI 

with sparse OBN data in deep-water regions. Further 

increase of maximum offsets and node/shot coverage can 

potentially relax the spacing requirements. 
 

Spatial aliasing is not the bottleneck for FWI using sparse 

node data, as was shown in the synthetic study. Instead, 

noise – anything that we cannot replicate in the forward 

modeling during FWI, such as background noise, amplitude 

mismatch between field data and synthetic data, etc. – will 

manifest more severely on the results when using sparser 

data. The greatly improved results when running to higher 

frequency and applying regularization in FWI confirmed 

that the S/N of data plays the most crucial role in FWI 

using sparse nodes for velocity data.  
 

Several approaches can be taken to further improve the 

FWI results with sparse nodes for velocity data. On the 

acquisition side, more powerful seismic sources, especially 

at the low frequency end, can be used to overcome the 

background noise and improve the S/N of data (Dellinger et 

al, 2016; Brenders et al., 2018). On the processing side, 

more advanced regularization schemes in both data and 

model domains can be developed to better suppress the 

noise in the inverted model; additionally, more accurate 

forward modeling in FWI with more realistic physics, e.g., 

anisotropy, absorption, and elasticity, will help in reducing 

the mismatch between synthetic and field data. 
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Figure 5: With a node spacing of  × m and a shot spacing of ×  m, the velocity model and the corresponding RTM image for: 

(a)/(b) Initial model; (c)/(d) 4 Hz FWI model; (e)/(f) 8 Hz FWI model; (g)/(h) 8 Hz FWI model with regularization; and (i)/(j) 8 Hz FWI model 

with non-decimated input. 
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