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Quantitative inversion of azimuthal anisotropy 
parameters from isotropic techniques

Abstract
Exploration and development of unconventional reservoirs, 

where fractures and in situ stress play a key role, calls for improved 
characterization workflows. In this work, we present a method for 
quantitative estimation of anisotropic parameters related to stress 
and fracture detection that makes use of standard isotropic modeling 
and inversion techniques in anisotropic media. Based on the Rüger 
reflectivity equations for horizontal transverse isotropic media, we 
build a set of transforms that map the elastic parameters used in 
prestack inversion into effective anisotropic elastic parameters. 
When used in isotropic forward modeling and inversion, these 
effective parameters accurately mimic the anisotropic reflectivity 
behavior of the seismic data, thus closing the loop between well-log 
data and seismic inversion results in the anisotropic case.

Introduction
The presence of natural fractures and in situ stress induces 

anisotropic seismic response that is neglected in many cases of 
interest for petroleum geophysics, due to its complexity and 
subtlety. As a result, isotropic prestack inversion has become a 
more widely applied methodology than its anisotropic counterpart. 
Nevertheless, most natural sediments, through their deposition 
and stress, will exhibit some degree of anisotropy, and ignoring 
its effects while estimating rock-physics properties may lead to 
biased results. In addition, for unconventional reservoirs, the 
characterization of fracture and stress is of central importance in 
making drilling decisions and reducing risks. Therefore, it is 
necessary to extend the isotropic inversion methodologies to take 
these effects into account and produce quantitative estimates of 
anisotropic properties, like the axis of anisotropy, usually related 
to fracture or stress orientation.

Anisotropy of rocks has several effects on seismic data. First, 
the propagation velocity of the seismic waveform is dependent on 
the direction in which the wave propagates through the rock. As 
a result, the traveltime of the reflected waves is dependent on 
angle and azimuth between source and receiver, causing differential 
time shifts in the seismic gathers. Second, anisotropy alters the 
seismic amplitude variation with offset (AVO) reflectivity com-
pared to isotropic conditions. Seismic reflectivity inversion is often 
used to produce a quantitative interpretation of layer properties 
in the subsurface. Typically, in seismic reflectivity inversion all 
events are assumed to be perfectly aligned and the propagation 
effects to have been removed in processing. 

In this paper, we will focus on seismic modeling and inversion 
and therefore focus on the effects of anisotropy on seismic reflections. 
Under anisotropic conditions, the number of parameters describing 
the reflections increases. In the case of vertical transverse isotropy 
(VTI), the Rüger equations contain five parameters: three isotropic 
elastic parameters and two Thomsen parameters. For horizontal 
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transverse isotropy (HTI), the number of parameters increases to 
seven and for tilted transverse isotropy (TTI) to eight.

This has two drawbacks for seismic reflectivity inversion. First, 
if we ignore the anisotropic character of the reflections and use 
isotropic inversion we obtain biased estimates of the elastic param-
eters from inversion. The calibration of seismic amplitudes and 
wavelets changes, and inversion results are no longer calibrated 
to the elastic well curves. Second, the number of parameters to 
be resolved is greater than the degrees of freedom in seismic 
amplitude reflections. With regular prestack data, the seismic 
AVO amplitudes can at best resolve three elastic parameters — 
intercept, gradient, and curvature — whereas seismic inversion 
can resolve combinations of the elastic properties P-velocity, 
S-velocity, and density. Even density from seismic inversion is 
usually questionable because long offsets and good-quality data 
are needed to recover it. By adding the azimuthal dimension it is 
possible to resolve an additional magnitude and direction. Resolv-
ing all the anisotropy parameters from seismic reflectivity inversion 
is, therefore, a nonunique problem.

In practice, inversion specialists will try to ignore the problems 
of anisotropy and perform isotropic modeling and inversion. This 
is a reasonable approach if the anisotropy is not diagnostic for the 
reservoir, such as in conventional reservoir characterization, and 
if the derived parameters are not too affected by the bias induced 
by the anisotropy.

Fortunately, the first two inverted parameters (P-impedance 
and S-impedance or P-impedance and VP /VS) are not too heavily 
affected by the anisotropic conditions. This means it is often possible 
to get away with isotropic inversion and modeling. However, there 
is a real danger when trying to extract density from isotropic seismic 
inversion under anisotropic conditions, as the “apparent” density 
reflectivity will change dramatically from the isotropic case and, 
under certain conditions, may even reverse its polarity.

To be able to cope with the nonuniqueness of the seismic data 
when faced with anisotropy, the industry typically has opted to 
change the modeling and inversion algorithms based on a certain 
theoretical model of the rock. The advantage of this approach is 
that the number of parameters controlling the reflections can be 
reduced, thus stabilizing the inversion process. Two major draw-
backs come to mind here. First, by assuming an underlying model 
for the rock, the degrees of freedom of the inversion are reduced 
and the solutions are limited to the selected rock model. Second, 
a separate inversion engine needs to be designed for every type 
of anisotropy. The underlying model needs to be coded at the 
heart of the inversion, and for every rock model, confidence in 
the inversion technology needs to be built before the inversion 
results are used to help make reservoir decisions.

In this paper, we will introduce a novel technology that will 
make it possible to use isotropic modeling and isotropic inversion 
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under anisotropic conditions. This means that trusted prestack 
well tying, wavelet estimation, and inversion technology can be 
used to achieve quantitative measures of the layers in the subsur-
face, even under anisotropic conditions.

This new technology, first introduced by Mesdag (2016), is 
based on transforming the isotropic elastic parameters to “effective” 
elastic parameters for certain types of anisotropy. These effective 
elastic parameters, which are based on the isotropic elastic param-
eters and the Thomsen anisotropy parameters, will mimic the 
anisotropic reflections when used in isotropic modeling and inver-
sion. Presently, this transformation to effective elastic parameters 
can be performed for general classes of anisotropy, such as VTI, 
HTI, and TTI. The transforms built contain no further assumptions 
as to the mechanism causing the anisotropy and are applied to 
well-log data so that the wells can be tied to the seismic data to 
derive correct wavelet amplitude and phase. The effective parameters 
in the wells also serve to derive low-frequency models for inversion. 
After inversion, based on the assumed class of anisotropy, analysis 
can be performed to recover the reservoir parameters of interest.

The effective elastic parameters have an analogue in the concept 
of elastic impedance (EI). EI was introduced by Connolly (1999) 
to allow the use of poststack modeling and poststack inversion 
on angle-stack data. The measured elastic parameters VP, VS, and 
Rho are transformed into an effective impedance that mimics the 
reflections in a higher angle seismic stack when using a zero-offset 
algorithm. With the industry’s acceptance of isotropic prestack 
inversion, interest in EI has decreased. Here we take the next 
step: making it possible to quantitatively use isotropic prestack 
modeling and inversion in an anisotropic setting.

In the next section, examples of the transforms are given for 
the cases of VTI and HTI. Two examples are presented showing 
that the effective elastic parameters and isotropic modeling give 
the same results as anisotropic modeling. After isotropic inver-
sion, the bias can be analyzed by applying a Fourier analysis on 
the azimuthally sectored inversion results, as outlined in the 
section “Post inversion analysis.” This is followed by a workflow 
example, where a typical feasibility study is outlined using a 
synthetic data model. As with any seismic inversion the low 
frequencies are not controlled by the seismic data, and a low-
frequency model needs to be postulated in the azimuthal sense. 
One method of doing this is shown in the final section where 
the azimuthal low-frequency model is updated based on the 
interpretation of a first-pass inversion.

The transforms
For the derivation of the elastic parameter transforms we start 

from the basic seismic reflectivity equation:

RP(θ) = R 0 + R2sin2θ + R4 sin2θ tan2θ,               (1)

where θ is the angle of incidence and R0, R2, and R4 are the 
intercept, gradient, and curvature of the seismic amplitude varia-
tion with angle response.

For weak anisotropy and an isotropic half-space overlaying 
an anisotropic half-space, Rüger (1998) presented the coefficient 
R for P-wave reflectivity in the VTI case
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In these equations, ZP represents the P-wave impedance, VP 
the isotropic P-wave velocity, VS the isotropic S-wave velocity, 
and G the shear modulus. ε, δ, and γ are the Thomsen parameters. 
ω is the azimuth of the seismic acquisition, and ϕ is the azimuth 
of the symmetry axis. The overstrike – indicates an average over 
an interface.

Note that in the HTI equations the Thomsen parameters δ 
and ε have a superscript (V ) as they refer to the vertical, or fast, 
HTI velocities. ε and δ in the VTI equations and γ in the HTI 
equations do not have this superscript and refer to the slow veloci-
ties. To avoid confusion, we choose reference velocities to be in 
the isotropy plane. This convention will result in a change of sign 
in γ, affecting the last term of R2.

Now we will introduce relative Thomsen parameters:

εr =
ε +1−ε
1−ε

δr =
δ +1−δ
1−δ

γ r =
γ +1−γ
1−γ

.            (2)

In these equations, the overstrike again indicates an average, 
background value. As for all Thomsen parameters, Δγr = Δγ, we 
can replace the absolute Thomsen parameter contrasts in the VTI 
and HTI reflectivity equations by relative contrasts. Then, by 
taking the logarithm of the reflectivity equation for VTI, it 
becomes relatively simple to f ind the effective elastic 
parameters:
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VS
ʹ = εr

4K+1
8K δr

1
8KVS

ʹρ =
ρ
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where K = (V–S/V–P)2. 
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For HTI, it is a little more work (Mesdag et al., 2013):
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In equations 3 and 4, the effective elastic parameters are 
denoted by a prime ́ . If there is no anisotropy, the relative Thomsen 
parameters have the value 1, highlighting how both equations 
reduce to the isotropic case. The HTI equation reduces to the 
VTI case along the symmetry axis, where ϕ = ω. It is important 
to realize here that these effective elastic parameters are not 
physically measurable quantities. They are substitutions for the 

isotropic elastic parameters in the isotropic seismic reflectivity 
equations under anisotropic conditions.

To tie the wells and estimate the wavelets, these transforms 
are used to convert isotropic elastic parameter logs into effective 
elastic parameters, thus taking the effect of anisotropy on the 
seismic reflectivity into account. Especially for the far-offset stacks, 
the wavelets and well ties will be more consistent.

Synthetic examples
In this section, two examples will be shown to verify the 

accuracy of the effective elastic parameters. Synthetic seismic 
gathers will be generated using the appropriate anisotropic model-
ing on the one hand and isotropic modeling with effective elastic 
parameters on the other hand.

For the first example, Figure 1 shows the input curves and 
the effective parameter curves. Where the Thomsen parameters 
are zero the effective parameters follow the isotropic parameters. 
Note that the anisotropic conditions reverse the contrast for some 
of the interfaces. This is most obvious for the density.

Figure 2 shows the synthetic angle gathers using a 25 Hz 
Ricker wavelet in the plane of the 
anisotropy symmetry axis. The black 
background wiggles are calculated with 
the Rüger equations; the red overlay is 
using isotropic modeling and the effec-
tive parameters. The low-incidence 
angles are to the left and the high inci-
dence angles to the right. For this set of 
elastic parameters and Thomsen param-
eters, there is no difference to be seen 
between the synthetics using anisotropic 
modeling and isotropic modeling with 
the effective elastic parameters.

The Rüger equation 1 defines the 
reflectivity at an interface between an 
isotropic layer overlay ing an 
anisotropic layer. By introducing the 
effective elastic parameters, we have 
transformed the Rüger reflectivity 
definition into layer properties. There-
fore, we are no longer limited to an 
interface between an isotropic and an 
anisotropic layer, and we are able to 
describe an arbitrary stack of isotropic 
and anisotropic layers. In the follow-
ing example, we consider a four-layer 
medium with two HTI layers wedged 
between two isotropic layers. The HTI 
layers differ in Thomsen parameters 
and also in the azimuth of the 
anisotropy axis. Again, two methods 
of forward modeling are shown. First, 
we use isotropic modeling and effec-
tive elastic parameters and, second, 
anisotropic modeling using the 
Pšenčik and Mart ins (2001) 
anisotropic reflectivity equations.

Figure 2. Synthetic HTI angle gathers along the symmetry axis. Black is using the Rüger equations for the 
anisotropic modeling; red is using isotropic modeling with the effective elastic parameters.

Figure 1. Well curves used for the first synthetic example. From left to right in black are the P-velocity, S-velocity, density, 
and the Thomsen parameters. The effective elastic parameters VP’, VS’, and r’ are shown in red in the first three panels.
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Figure 3 shows common-angle, common-azimuth sections 
of a single common midpoint (CMP) in the four-layer model. As 
with the first example, the traces range from an angle of incidence 
of 5° to 55° and here, additionally, they cycle through six azimuth 
sectors from 0° to 150°. Note the similarity of the reflections at 
the interface between the two anisotropic layers.

Post inversion analysis
When performing isotropic inversion in an anisotropic setting, 

the result of the inversion will be a set of effective elastic param-
eters. Where the layers are anisotropic, the inversion results are 
biased by this anisotropy.

In VTI media, the reflectivity response is not dependent on 
the azimuth, so a single prestack inversion is performed. The 
isotropic elastic parameters can be back-calculated knowing the 
Thomsen parameters and substituting this into equation 3. Since 
the seismic inversion is only at best resolving three elastic param-
eters and with VTI there are five “unknowns,” it is not possible 
to uniquely resolve all parameters without a prior model, and 
reservoir characterization may need to be performed using the 
effective elastic parameters themselves.

In the case of HTI, separate prestack inversion is performed 
for several azimuth sectors. This means that the sectored inversion 
results need to be analyzed. In this section, the HTI analysis 
procedure will be explained.

Seismic inversion is typically not performed using the basic 
elastic parameters VP, VS, and ρ. The most common parameter 
sets for inversion are IP, IS, VP /VS, and ρ. The elastic parameter 
transforms for these inversion parameters follow from equation 
4 and are listed here:
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By taking the natural logarithm of equations 6–8, these 
equations take on the general form of a Fourier series expansion 
with three coefficients:

ʹA = b0 + b1 cos 2 φ −ω( )⎡⎣ ⎤⎦+ b2 cos 4 φ −ω( )⎡⎣ ⎤⎦ .         (9) 

This was reported for seismic reflection amplitudes by Ikelle 
(1996) and then Sayers and Dean (2001). The coefficients b0, b1, 
and b2 are related to the Thomsen parameters and A ’ represents 
the logarithm of the effective elastic property. This provides a 
direct way to estimate quantities related to anisotropy by 

measuring the changes in the values of the effective properties 
with respect to their azimuthal sectors. Note here that to be able 
to resolve the three Fourier components of equation 9, at least 
five measurements are needed. In the examples in this paper, 
we use six azimuth sectors.

For VP /VS, the coefficients of equation 9 become:
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For effective S-impedance, the coefficients follow:
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And for effective density:
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Figure 3. Full-azimuth response from the four-layer model (a) using isotropic 
modeling and effective elastic parameters and (b) using Pšenčik and Martins 
(2001) anisotropic modeling.
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The coefficients b0, b1, and b2 can be derived from azimuthally 
sectored inversions by Fourier fitting to the natural logarithm of 
the inversions. The coefficient b1 represents the first-order mag-
nitude of the anisotropy, and the phase of this Fourier coefficient 
defines the azimuth of the anisotropy.

Workflow example
In the following sections, we go through a forward modeling 

and inversion workflow and show how to use effective elastic 
parameters in a feasibility study. Here, a synthetic data set is used, 
so we are able to directly compare the results with the input 
models. The steps are shown in Figure 4.

Of course, a synthetic case is not the full story. For a real-data 
example we refer to a paper by Zhang and Mesdag (2016), where 
this technology is applied on the Marcellus shale, and it is shown 
that anisotropy is not necessarily confined to single layers but 
may leak into the adjacent strata under strong flexing conditions. 
In another paper, Filipova et al. (2016) compare anisotropic 
inversion results with auxiliary stress measurements and micro-
seismic events.

We first make a notional model of the HTI anisotropic sub-
surface defined in isotropic elastic parameters, the three Thomsen 
parameters and the anisotropy axis orientation. In this model, 
there are three different HTI layers embedded in an isotropic 
background model, each layer built using different HTI modeling. 
The top anisotropic layer follows the Hudson dry crack model 
(Hudson, 1980) and falls within the linear slip theory (LST), 
(Bakulin et al., 2000). The bottom anisotropic layer follows LST, 
and the middle anisotropic layer, directly on top of the bottom 
anisotropic layer, does not follow any fracture model.

An inversion parameterization of IP, VP /VS, and density will 
be used here. The relationships defined in the previous section 
allow us to directly calculate from the model what we expect to 
come out of our inversion in terms of VP /VS and density anisotropy. 
In Figure 5, the expected outcomes for b1 and b2 are shown for 
VP /VS (equation 10) and for density (equation 11). Please note the 
following features in this model:

•	 For both VP /VS and density the second Fourier coefficient (b2) 
is significantly smaller than the first (b1). The Thomsen ε and 
δ for these models are of the same order of magnitude and 
largely cancel each other out in the second Fourier coefficient 
(b2). For the Hudson dry cracks, they cancel out completely. 
This feature is important for the way we update the azimuthal 
low-frequency model in the final sections of this paper.

•	 b1 for VP /VS is generally negative and b1 for density is positive. 
This means that the effective VP /VS is highest in the isotropic 
plane and lowest in the direction of the anisotropy axis, while 
the effective density is lowest in the isotropic plane. This is 
important to know for the analysis of the inversion results 
owing to the seismic ambiguity of anisotropy magnitude and 
azimuth. In most cases, a negative VP /VS anisotropy is a correct 
assumption. It is not, however, a general rule, as we can see 
here, given that the lower anisotropy layer has a positive b1.

•	 For the fracture models of Hudson and LST, the VP /VS anisot-
ropy is small compared to the density anisotropy. For the 
chosen parameterization, the VP /VS anisotropy is smaller than 

0.5%, while the density anisotropy is up to 10 times larger. 
For the analysis of anisotropy, this has two consequences. 
First, it will be hard to estimate the VP /VS anisotropy in the 
presence of noise. Second, the anisotropy will be mainly visible 
on the far offsets, putting severe constraints on the acquisition 
and processing of the seismic data in a real case.

In a second step, we calculate the azimuthally oriented effective 
elastic parameters as described in equations 7 and 8. Here, we 
define six equal sectors between 0° and 180°. As the anisotropic 
variations in the elastic parameters are only a fraction of the actual 
isotropic values, the azimuthally sectored effective parameters are 
not shown here.

The azimuthally sectored effective parameters can be analyzed 
on a sample-by-sample basis taking the Fourier transform in the 

Figure 4. Workflow of an anisotropic inversion feasibility study.

Figure 5. (a) The expected VP /VS and (b) density anisotropy, given the isotropic 
elastic parameters and Thomsen parameters of the model.
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azimuthal direction. This gives us new estimates of the b1 and b2 
of the anisotropy together with an estimate of the anisotropy 
azimuth, shown in Figure 6, which can be compared with the 
expected anisotropy in Figure 5.

Seismic data cannot resolve whether the anisotropy has one 
sign and a particular azimuth or whether it has the opposite sign 
and an azimuth rotated by 90°. Therefore, to calculate the results 
shown in Figure 6, we have had to predefine the sign of the 
anisotropy magnitude. In keeping with our general belief, we 
gave the VP /VS anisotropy a negative sign and the density anisotropy 
a positive sign. Where we chose the sign incorrectly, in the lower 
anisotropy layer, there is a 90° rotation in the anisotropy azimuth 
of VP /VS.

The next step in the feasibility workflow is the calculation 
of the azimuthally oriented prestack or partial stack seismic 
data. This forward modeling can be done either by using the 
initial model and anisotropic forward modeling or by using 
the azimuthally oriented effective parameters and isotropic 
forward modeling. As shown in the earlier synthetic examples, 
these two alternatives give exactly the same seismic synthetics. 
Given that the model contains stacked anisotropic layers, we 
would have to use the Pšenčik and Martins flavor of anisotropic 
reflectivity modeling. As we already had the azimuthally sec-
tored effective elastic parameters, we used these here in an 
isotropic synthetic tool.

Although we have the freedom to use any wavelet in the 
modeling, we chose to use a simple 25 Hz Ricker wavelet. We 
generated six partial angle stacks ranging from 0° to 55°. No noise 
was added to the synthetic seismic data. 

Figure 7 shows detail of two events in the synthetic seismic 
data. On the left-hand side, we see three seismic CMPs in a 

common-angle, common-azimuth plot, where the extractions are 
from the base of the upper anisotropic layer. As discussed earlier, 
this layer is dominated by density anisotropy. On the right-hand 
side, we see a similar plot, but now the extraction is from the top 
of the second anisotropic layer. This layer shows a mix of both 
VP /VS and density anisotropy. As mentioned earlier, the left-hand 
plot shows its main azimuthal variations on the far angles, while 
the azimuthal amplitude variations on the right-hand plot are 
more equally distributed over the angles.

The final step in the workflow is to invert every azimuth 
separately with an (isotropic) prestack inversion program. The 
inverted full-bandwidth VP /VS and density per azimuth are then 
input to the Fourier analysis to yield estimates of b0, b1, and b2 
and the anisotropy symmetry axis orientation after inversion. The 
results are shown in Figure 8 and can be compared with the 
expected Figure 6. Inversion has introduced a higher level of 
noise, which means the low values of the Fourier coefficients 
become invisible, but where the coefficients exceed about 2% we 
see good agreement, including the 90° ambiguity in the azimuth 
estimate in the VP /VS of the lower anisotropic layer. We also see 
that we are correctly reconstructing the azimuth, at the position 
where the second anisotropic layer contains an interface where 
only the azimuth changes, as seen on the right-hand side of the 
lower panels. This feature would not have been reconstructed if 
we had used Rüger modeling for the synthetics.

Updating the azimuthal low-frequency model
In the azimuthally sectored inversions of the previous section 

the appropriate effective parameter trend for each of the azimuthal 
sectors was used. This means that the low-frequency models varied 
per sector. In practice, it is not possible to do this correctly in a 

first-pass inversion. The Thomsen 
parameters and the azimuth of the 
anisotropy may be known at selected 
wells, but only guesswork is possible 
away from well control. Therefore, in 
practice, in a first iteration, the same 
trend will be used for every seismic 
sector. This single trend will most likely 
be derived by interpolating the isotropic 
well logs.

The azimuthally sectored inversions 
were repeated using the same isotropic 
trend for every sector. After choosing a 
negative branch for VP /VS in the Fourier 
analysis, the results are shown in 

Figure 7. Details of synthetic seismic traces at three adjacent CMPs together with amplitude extractions.

Figure 6. Anisotropy and azimuth estimates from azimuthally sectored effective VP /VS and density.
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Figure 9. Although the individual sectored inversions are full 
band, the trend is not varying in the azimuthal sense and the low 
frequencies are missing in the anisotropy estimates. The azimuthal 
information from this first-pass inversion is fundamentally band 
limited and the anisotropy only shows up at the interfaces where 
the anisotropy changes. Also the azimuth shows horizon-con-
current banding due to the 90° rotation that occurs in the sidelobes 
of the band-limited signal.

By extracting the azimuth directly below the top horizon and 
directly above the bottom horizon, we obtain two azimuth maps 
to be used to construct a prior azimuth model for a second-pass 
Fourier analysis. Instead of choosing a negative branch for VP /VS 
and getting only negative anisotropy numbers, employing a prior 
azimuth leads to a two-sided signal for the Fourier coefficient b1. 
Since this anisotropy signal is a calibrated band-limited representa-
tion of the full bandwidth b1, it can be used to reconstruct the 
full-bandwidth signal from its peak-to-trough amplitudes which 

correspond to relative contrasts (Mesdag et al., 2010, 2015). Such 
contrast in azimuth and b1 are enough to build an azimuthal 
low-frequency model using the following approximation (Zhang 
and Mesdag, 2016):

VP

VS

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

ʹ
≈ e 2b1∗cos

2 ω−φ( ) i
VP

VS

.                       (13)

The full-band VP /VS data thus obtained contains enough infor-
mation for a quantitative estimation of the anisotropic parameters 
shown in Figure 10. These estimates for azimuth and b1 can now 
be quantitatively compared with the expected values in Figure 5.

Conclusions
In this paper, we introduce elastic parameter transforms that 

allow us to perform seismic forward modeling and inversion 

Figure 8. Anisotropy and azimuth estimates from inversion of azimuthally sectored seismic gathers.

Figure 9. Anisotropy and azimuth estimates from inversion of azimuthally sectored seismic gathers, using a single isotropic background trend.
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using isotropic formulations in anisotropic media. Using several 
synthetic examples, it is shown that the transforms are accurate 
for arbitrary stacks of isotropic and anisotropic layers. Effective 
elastic parameters are used to tie wells and estimate wavelets. 
No modifications are necessary to the forward modeling and 
inversion algorithms. Seismic inversion results are analyzed 
using the same elastic parameter transforms. The azimuthal 
variations in the signal coming out of seismic inversion of azi-
muthally sectored gathers are fundamentally band limited, and 
a method is outlined to update the low frequencies in the azi-
muthal sense.

The workflow introduced has been applied to a generic HTI 
model without suggesting any particular rock-physics model to 
describe the origin of the anisotropy. If such modeling is intro-
duced, the Fourier coefficient equations (equations 10–12) par-
ticularize to simple functions of the model parameters. As an 
example, for the Hudson penny-shaped crack model, the Fourier 
coefficients are proportional to the crack density, and the azimuth 
exactly corresponds to the orientation of the cracks. 

Corresponding author: peter.mesdag@cgg.com
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