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Summary 
 
Low-frequency seismic data are crucial for the success of 
full waveform inversion (FWI) used in velocity model 
building. Marine acquisition technologies have evolved to 
increase low-frequency seismic signals. However, 
significant low-frequency noise, often caused by water 
flowing across the streamers, still alters the signal-to-noise 
ratio. We propose to use an algorithm based on a dipole 
sparse tau-p inversion to attenuate low-frequency and high-
dip noise. When applied to synthetic and real data sets, this 
method provides clean low-frequency input data to enhance 
the performance of FWI.  
 
Introduction 
 
Full waveform inversion is widely used for building 
velocity models (Tarantola 1984; Virieux and Operto 
2009). With the advancement of hardware and software, 
and the improvement of algorithmic efficiency, FWI has 
been successfully applied to 3D real data with different 
acquisition patterns (Plessix 2009; Sirgue et al. 2010; Vinje 
et al. 2012; Ratcliffe et al. 2013; Jones et al. 2013; Mothi et 
al. 2013).  
 
Low-frequency seismic data with a good signal-to-noise 
ratio (S/N) are crucial for the success of FWI. A case study  
by Baeten (2013) has shown that FWI starting from 1.5 Hz 
leads to a successful update of velocity while starting from 
2 Hz fails. 
 
Various broadband marine solutions have been proposed to 
increase the low-frequency seismic signals, and acquisition 
technologies have evolved to reduce the noise caused by 
tugging, birds and electrical devices. However, remaining 
significant low-frequency noise, mostly caused by water 
flowing across the streamers, impairs the S/N of low-
frequency data, which creates challenges for FWI. 
 
Figure 1a shows four input shot gathers before noise 
attenuation. Figure 1c is the output after standard noise 
attenuation using f-x projection filtering (Soubaras, 1995). 
We observed that the standard method did a reasonable job 
to remove most of the swell noise. However, when we 
applied a low-pass filter at 4.5 Hz to this output, we noticed 
that there was still significant low-frequency residual noise 
which poses a great challenge for FWI (Figure 1d). We also 
applied the dipole sparse tau-p noise attenuation method 
proposed by Ray et al. (2014) to the same input data and 
the output is shown in Figure 1e. While the full-bandwidth 
results using both denoise attenuation methods look similar 
(Figures 1c and 1e), the low-frequency (<4.5 Hz) output 

using the dipole sparse tau-p noise attenuation method 
(Figure 1f) is significantly cleaner than that using the 
standard noise attenuation method (Figure 1d). The higher 
low-frequency S/N provided by the former method is very 
important for the success of FWI.  
 
Ray et al. (2014) described the mathematical details of the 
dipole sparse tau-p inversion and attributed the success of 
their method for low-frequency/high-dip noise attenuation 
to two factors: (1) the sparse tau-p inversion reduces the 
energy leakage among different p values and thus gives an 
more accurate tau-p representation of the input data 
compared to regular tau-p transform and (2) the dipole term 
tends to emphasize the high-frequency and low-dip events 
and thus effectively attenuates low-frequency and high-dip 
noise while preserving the primaries.  
 
Using both synthetic and field data, we demonstrate that  
the improved low-frequency S/N due to the dipole sparse 
tau-p inversion noise attenuation makes FWI more stable, 
converge faster and the resulting FWI velocity model gives 
better migration images. 
 

 
Figure 1: Shot gathers (a) before noise attenuation, (c) after 
standard noise attenuation, and (e) after noise attenuation using 
dipole sparse tau-p inversion. Low-pass filtered shot gathers at 4.5 
Hz (b) before noise attenuation, (d) after standard noise 
attenuation, and (f) after noise attenuation using dipole sparse tau-p 
inversion. 
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Synthetic data example 
 
We tested this dipole sparse tau-p noise attenuation method 
for FWI data preconditioning on a 2D synthetic data set 
modeled from an isotropic elastic model provided by 
Chevron in 2014 for FWI benchmark testing.  
 
This data set contains low-frequency noise to mimic the 
real world seismic data (Figures 2a and 2b). After dipole 
sparse tau-p noise attenuation, a clear uplift was observed 
in the low-frequency panel (Figures 2c and 2d). The raw 
data had a poor S/N below 3 Hz, which was greatly 
improved by dipole sparse tau-p noise attenuation (Figure 
2d). Next, we evaluated the impact of the improved low-
frequency S/N on FWI results. 
 
We used the 1D velocity model provided by Chevron 
(Figures 3a and 3b) as a starting point for all of our FWI 
tests. Figures 3c and 3e show the FWI results to 3 Hz and 
to 10 Hz using the raw data as input, while Figures 3d and 
3f show the FWI results to 3 Hz and to 10 Hz using the 
denoised data as input. The FWI results using the denoised 
data had fewer swing artifacts (blue circles) and a stronger 
velocity update (red circles). Compared to the migrated 
common image gathers (CIGs) using the FWI velocity 
obtained from the raw data (Figures 3g and 3i), the 
migrated CIGs using the FWI velocity generated by the 
denoised data (Figures 3h and 3j) were flatter and better 
focused, which further validated the denoise approach. 

 
Figure 2: Raw input shot gathers low-pass filtered at: (a) 3.5 Hz 
and (b) 2.5 Hz. Shot gathers after noise attenuation using dipole 
sparse tau-p inversion low-pass filtered at: (c) 3.5 Hz and (d) 2.5 
Hz. 
 

Figure 3: (a) and (b) initial velocity model provided by Chevron. FWI velocity model to: (c) 3 Hz and (e) 10 Hz using the raw input data. FWI 
velocity model to: (d) 3 Hz and (f) 10 Hz using the denoised input data. Common image gathers (CIGs) migrated with (g) 3 Hz and (i) 10 Hz 
FWI velocity generated using raw data. CIGs migrated with (h) 3 Hz and (j) 10 Hz FWI velocity generated using denoised data.  
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Figure 4: Red and blue solid lines represent the cost function after 
each iteration using the raw and the denoised input data, 
respectively. Red and blue dashed lines represent the percentage 
reduction in the cost function after eight iterations in each 
frequency range using the raw and the denoised input data, 
respectively.  

Figure 4 compares the absolute value of the cost function 
(solid lines) and the percentage of its reduction (dashed 
lines) for each iteration and each frequency. The denoised 
data resulted in a smaller absolute value of the FWI cost 
function (solid blue lines) and faster convergence (dashed 
blue line). 
 
Field data example 
 
The data set was acquired in the deep water Kwanza Basin 
offshore Angola using a narrow-azimuth, variable-depth, 
towed-streamer configuration with 8 km maximum offset. 
The streamer depth varies from 8 m at the nearest offset to 
50 m at the furthest offset.  
 
The variable-depth tow data is characterized by a broader 
bandwidth and an increased S/N at low frequencies due to a 
larger average receiver depth, particularly at far offsets 
where the deepest penetrating diving waves are recorded at 
a receiver depth close to 50 m. The low-frequency S/N 
after a standard denoise workflow (i.e., swell noise and 
seismic interference attenuation) is relatively high due to 
deep receiver depths (Figures 5a-c). Wray et al. (2014) 
demonstrated that FWI works well for this data set even 
with a standard denoise workflow (Figures 6a and 6c).   
 
However, there still exists apparent low-frequency and 
high-dip noise that may adversely affect FWI. After dipole 
sparse tau-p noise attenuation, we observed better low-
frequency signals, in particular below 2.5 Hz (Figure 5f); 

this provides FWI with a superior input. Next, we checked 
if this input could give even better FWI results than those 
obtained by Wray et al. (2014). 
 
For FWI testing, our starting V0 model comes from high-
resolution, ray-based tomography (Guillaume et al. 2011), 
and the starting ε and δ models come from ray-based 
tomography with well control applied. Figure 6a shows the 
FWI-updated velocity to 7 Hz using input data after 
standard denoise and the migrated CIGs are shown in 
Figure 6c (Wray et al. 2014). We could observe that this 
FWI-updated velocity properly flattens most events.  The 
FWI-updated velocity to 7 Hz (Figure 6b) using input data 
after dipole sparse tau-p inversion looks similar to that in 
Figure 6a. However, a careful examination reveals that the 
former has better resolution and better matches the 
geological features. The migrated CIGs (Figure 6d) using 
the velocity in Figure 6b are generally flatter and better 
focused than those (Figure 6c) generated using the velocity 
in Figure 6a. It is worth re-iterating that FWI using input 
data after dipole sparse tau-p noise attenuation converges 
much faster due to a higher low-frequency S/N. 
 
Conclusions and discussion 
 
We showed that the dipole sparse tau-p inversion method 
effectively attenuates low-frequency and high-dip noise for 
both synthetic and field data. An improved low-frequency 
S/N makes FWI more stable, converge faster and the 
resulting FWI velocity model gives better migration 
images. 
  
We demonstrated that low-frequency seismic data with a 
good S/N are crucial for the success of FWI. While various 
algorithms can be used to attenuate the noise in the 
acquired seismic data and hence improve the low-
frequency S/N for FWI, a more fundamental way to 
improve the low-frequency S/N is to increase low-
frequency seismic signals and reduce low-frequency noise 
through innovations of marine survey technologies. 
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Figure 5: Shot gathers after standard noise removal processing followed by low-pass filters at: (a) 3.5 Hz, (b) 3.0 Hz, and (c) 2.5 Hz. Shot 
gathers after further noise attenuation using dipole sparse tau-p inversion followed by low-pass filters at: (d) 3.5 Hz, (e) 3.0 Hz, and (f) 2.5 Hz. 
 

 
Figure 6: Velocity model updated with FWI using input data after standard denoise workflow: (a) without, and (b) with dipole sparse tau-p 
inversion denoise. An example of migrated CIGs using: (c) velocity in (a), and (d) velocity in (b), respectively. 
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