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Abstract

Amplitude variation with offset and azimuth (AVOAz) analysis can be separated into two separate parts:
amplitude variation with offset (AVO) analysis and amplitude versus azimuth (AVAz) analysis. Useful informa-
tion about fractures and anisotropy can be obtained just by examining the AVAz. The AVAz can be described as a
sum of sinusoids of different periodicities, each characterized by its magnitude and phase. This sum is math-
ematically equivalent to a Fourier series, and hence the coefficients describing the AVAz response are azimuthal
Fourier coefficients (FCs). This FC parameterization is purely descriptive. The aim of this paper is to help the
interpreter understand what these coefficients mean in terms of anisotropic and fracture parameters for the
case of P-wave reflectivity using a linearized approximation. The FC representation is valid for general
anisotropy. However, to gain insight into the significance of FCs, more restrictive assumptions about the
anisotropy or facture system must be assumed. In the case of transverse anisotropic media with a horizontal
axis of symmetry, the P-wave reflectivity linearized approximation may be rewritten in terms of azimuthal FCs
with the magnitude and phase of the different FCs corresponding to traditional AVAz attributes. Linear slip
theory is used to show that the FCs can be interpreted similarly for the cases of a single set of parallel vertical
fractures in isotropic media and in transverse anisotropic media with a vertical axis of symmetry (VTI). The
magnitude of the FCs depends on the fracture weakness parameters and the background media. For the case of
vertical fractures in a VTI background, the AVOAz inverse problem is underdetermined, so extra information
must be incorporated to determine how the weights are modified due to this background anisotropy. We evalu-
ated this on a 3D data set from northwest Louisiana for which the main target was the Haynesville shale.

Introduction
P-wave amplitude variation with offset (AVO), or am-

plitude versus angle (AVA) as it should more correctly
be known, has proven to be an important technology to
characterize reservoirs in isotropic media, especially
with the use of the Aki-Richards linearized approxima-
tion (Aki and Richards, 1980). This equation can also be
readily extended to transverse anisotropic media with a
vertical symmetry axis (VTI) such as shales (Thomsen,
1993; Rüger, 2002). As we will show in the next section,
isotropic and VTI cases are a function of the incident, or
polar, angle alone. Thus, VTI behavior in AVO is difficult
to distinguish from isotropic behavior. In fractured
media, it has proven beneficial to examine amplitude
variation with offset and azimuth (AVOAz) response
(Gray and Todorovic-Marinic, 2004; Xia et al., 2007).
This now introduces a second angle, the azimuthal an-
gle, which gives us two angles with which to extract
anisotropic parameters, making the evaluation of azi-
muthal anisotropy less nonunique than the evaluation
of VTI, or polar, anisotropy. (This assumes, of course,

that you have a good range of observed azimuths.)
The presence of fractures introduces anisotropy
(Schoenberg, 1980; Hudson, 1981), necessitating the
use of a more complex reflectivity expression. Thomsen
(1993), Rüger (1998), and Pšenčik and Martins (2001)
derive P-wave-linearized AVOAz relationships for aniso-
tropic media of differing complexity. Analyzing and fit-
ting data using these AVOAz relationships is more
difficult than with AVO analysis because of the extra
dimensionality of the problem. One way to simplify
the analysis is to split the problem into two parts: am-
plitude versus azimuth (AVAz) and AVO analyses.

The AVAz response can be written in terms of a Fou-
rier series (Ikelle, 1996; Sayers and Dean, 2001). Note
that a Fourier series is a sum of weighted sinusoids
of differing periodicities. The weights describing the
sinusoids are called Fourier coefficients (FCs), which
are dependent on the angle of incidence. By analyzing
data from one particular incidence angle, it is possible
to analyze just the AVAz reflectivity. The azimuthal FCs
describing the AVAz behavior are estimated using a
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Fourier transform. Because of the orthogonality of the
Fourier transform, each of these azimuthal FCs conveys
unique and independent information about the azimu-
thal data, making them ideal attributes to interpret.
One of the key benefits of using these azimuthal FCs
is that they are descriptive in nature. It is possible to
look at the AVAz response and have an intuitive feel
for what the azimuthal FCs should be and whether
the calculated values are reasonable.

We begin by reviewing AVO in isotropic and VTI me-
dia. The AVOAz reflectivity (Rüger, 1998) for transverse
anisotropic media with a horizontal symmetry axis
(HTI) is then separated into its constituent parts. The
AVO part has the same form as the isotropic case.
The AVAz part is written in terms of a Fourier series.
The magnitude of the second FC is proportional to
the anisotropic gradient, whereas the magnitude of
the fourth FC is a function of the anellipticity. These
concepts are illustrated with a simple example. Next,
the calculation of the azimuthal FCs is discussed along
with some practical considerations in performing these
calculations on real data.

The case of general anisotropy is studied by re-
arranging the Pšenčik and Martins (2001) linearized
PP reflectivity expression as a Fourier series. This
has the same basic form as the HTI formulation but with
differing FCs. The FCs are functions of a total of nine
parameters that, in turn, are functions of the stiffness
coefficients and density. The case of general anisotropy
has 21 stiffness coefficients, and hence the P-wave
AVOAz inverse problem for the general anisotropy is
nonunique (Pšenčik and Martins, 2001). This is true
for any symmetry requiring eight parameters or more
to describe it, such as orthorhombic or monoclinic
anisotropy. Note that the anisotropy due to a conjugate
set of fractures is generally monoclinic or in the case of
dipping fractures triclinic. The number of parameters
can be reduced by assuming some rock physics model.
Linear slip (LS) theory (Schoenberg, 1980; Schoenberg
and Douma, 1988; Schoenberg and Helbig, 1997) is used
to calculate the azimuthal FCs for the case of a set of
parallel vertical fractures in an isotropic (VFI) back-
ground rock. The anisotropy due to VFI is generally
orthorhombic, but for the subcase of rotationally sym-
metric fractures, the anisotropy is HTI. In this special
case, the azimuthal FCs reduce to that of Downton et al.
(2011) and can be directly compared to the HTI (Rüger,
1998) reflectivity expressions. By comparing these two
formulations, it is evident that the anisotropic gradient
can be estimated using only FCs calculated from the
AVAz data.

Many shale gas reservoirs are thought to be VTI, so
the case of vertical fractures in a transverse isotropic
(VFTI) background rock is studied last. The presence
of VTI anisotropy modifies the expressions of the azi-
muthal FCs. Similar to VTI AVO, the VFTI AVOAz in-
verse problem is underdetermined. However, if some
knowledge of the background anisotropy exists, it is
possible to predict how the VFTI AVOAz response dif-

fers from the VFI base case. This is illustrated using a
3D data set from northwest Louisiana for which the
main target is the Haynesville Formation. This data
set is first used to compare anisotropic gradient esti-
mates calculated using FCs and AVOAz inversion. Then,
a modeling study is performed to try and understand the
influence of the background VTI anisotropy on the azi-
muthal FCs.

Amplitude variation with offset
To study the AVOAz response, it is instructive

to separate the amplitude response into its con-
stituent AVO and AVAz parts. The linearized AVO or
more precisely the AVA P-wave reflectivity in iso-
tropic (Aki and Richards, 1980; Swan, 1993) and VTI
media (Thomsen, 1993; Blangy, 1994; Rüger, 2002) is
given by

RðθÞ ¼ Aþ B sin2 θ þ C sin2 θ tan2 θ (1)

and is solely a function of the angle of incidence θ.
The intercept A, gradient B, and curvature C are linear
combinations of the fractional material contrasts
across a simple interface. In isotropic media, these
are defined as

A ¼ ΔVP

2V̄P
þ Δρ

2ρ̄
; (2)

Biso ¼ ΔVP

2V̄P
− 4

V̄2
S

V̄2
P

�
ΔVS

V̄S
þ Δρ

2ρ̄

�
; (3)

and

Ciso ¼ ΔVP

2V̄P
; (4)

where ρ, VP, and VS are the density and the P- and
S-wave velocities. The symbol Δ denotes a difference,
whereas an overbar represents the average of the
material properties across the interface. In VTI media,
the B and C parameters

BVTI ¼ Biso þ
Δδ
2

(5)

and

CVTI ¼ Ciso þ
Δε
2

(6)

are perturbed by Δε and Δδ. The fractional Thomsen
(1986) parameters ε, δ, and γ describe the degree of
anisotropy relative to the vertical P- and S-wave veloc-
ities within the media. The vertical P- and S-wave veloc-

ST10 Interpretation / August 2015

D
ow

nl
oa

de
d 

06
/0

2/
15

 to
 2

16
.6

3.
24

6.
11

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SE
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/



ities defined in terms of stiffness coefficients are VP ¼ffiffiffiffiffiffiffiffiffiffiffi
c33∕ρ

p
and VS ¼ ffiffiffiffiffiffiffiffiffiffiffi

c44∕ρ
p

.
The AVO reflectivity is a weighted sum of the inter-

cept, gradient, and curvature. Given data at three or
more unique angles, it is possible to estimate parame-
ters A, B, and C. If the media are known to be isotropic,
it is then possible to estimate the density, P-wave veloc-
ity, and S-wave velocity (Buland and Omre, 2003). How-
ever, if the media are VTI, then there are two additional
unknown parameters and the inversion to material
properties is underdetermined. In practice, due to lim-
itations of the data acquisition and noise, the near-offset
AVO approximation

RðθÞ ¼ Aþ B sin2 θ (7)

is often inverted providing estimates of only two
parameters.

Equations 1 and 7 exhibit no azimuthal dependence.
If the seismic amplitude data also vary as a function
of azimuth, this extra information may be used to
infer additional parameters about the earth’s material
properties.

Amplitude variation with offset and azimuth for
transverse anisotropic media with a horizontal
symmetry axis

In HTI media, the amplitude also varies as a function
of azimuth. The linearized P-wave reflectivity at the in-
terface between two HTI media that share the same
symmetry axis ϕsym as a function of polar angle θ and
azimuth ϕ is (Rüger, 1998)

Rðϕ;θÞ¼ΔZ
2Z̄

þ1
2

��
ΔVP

V̄P
−
�
2
VS

VP

�2ΔG
G

�

þ
�
ΔδðvÞþ8

�
VS

VP

�2

Δγ
�
cos2ðϕ−ϕsymÞ

�
sin2θ

þ
�
ΔVP

2VP
þ1
2
ðΔεðvÞsin2ðϕ−ϕsymÞ

þΔδðvÞcos2ðϕ−ϕsymÞÞsin2ðϕ−ϕsymÞ
�
sin2θtan2θ;

(8)

where Z ¼ ρVP is the vertical P-wave impedance and
G ¼ c44 ¼ ρV2

S is the shear modulus. The superscript
v on the fractional Thomsen (1986) parameters indicate
that εðvÞ and δðvÞ are referenced to the vertical axis
rather than the symmetry axis. Table 1 in Rüger
(1998) describes the transformations between the
two parameterizations. Equation 8 is sometimes written
in terms of γðvÞ as

Rðϕ;θÞ¼ΔZ
2Z

þ1
2

��
ΔVP

VP
−
�
2
VS

VP

�2ΔG
G

�

þ
�
ΔδðvÞ−8

�
VS

VP

�
2
ΔγðvÞ

�
cos2ðϕ−ϕsymÞ

�
sin2θ

þ
�ΔVP

2VP
þ1
2
ðΔεðvÞsin2ðϕ−ϕsymÞ

þΔδðvÞcos2ðϕ−ϕsymÞÞsin2ðϕ−ϕsymÞ
�
sin2θtan2θ;

(9)

making use of the linearized approximation γ ≈ −γðvÞ,
but at a loss of accuracy (Rüger, 2002). This second
version can be rewritten in terms of the fracture weak-
ness parameters without further approximations and so
is used in this paper.

Typically, for real seismic data, the near-offset
approximation

Rðϕ; θÞ ¼ Aþ ðBiso þ Bani cos2ðϕ − ϕsymÞÞsin2 θ (10)

is used to infer the parameters from the AVOAz data.
Equation 10 is parameterized in a similar fashion as
the isotropic AVA equation using

Biso ¼ 1
2

�
ΔVP

VP
−
�
2
VS

VP

�2 ΔG
G

�

¼ ΔVP

2VP
− 4

V2
S

V2
P

�
ΔVS

VS
þ Δρ

2ρ

�
(11)

and

Bani ¼
1
2

�
ΔδðvÞ − 8

�
VS

VP

�2

ΔγðvÞ
�
: (12)

Compared to two-term AVO inversion, the near-offset
Rüger approximation provides the interpreter with
two additional parameter estimates: the anisotropic gra-
dient Bani and the symmetry axis azimuth ϕsym. A non-
zero anisotropic gradient implies that the media is
anisotropic. The exact interpretation is complicated by
the fact that Bani is a weighted difference of the Thomsen
parameters δðvÞ and γðvÞ, and it is possible for the two to
cancel out. In the “Single set of vertical fractures in iso-
tropic background media” section it is shown that the
anisotropic gradient is a function of fracture weakness
parameters and that, for a single vertical fracture, the
isotropy plane azimuth is parallel to the fracture strike.
The isotropy plane azimuth is perpendicular to the sym-
metry axis azimuth.

Further complicating the interpretation is that the
solution for Bani and ϕsym is nonunique. The nonlinear
inversion of equation 10 results in two solutions that fit
the data equally well. Estimating Bani involves taking
the square root of an intermediate result (Downton
and Gray, 2006), thus introducing a sign ambiguity.
Choosing the wrong sign for Bani introduces a 90° shift
to the estimate of ϕsym and biases Biso.
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Figure 1 shows a synthetic gather generated using
equation 8 based on the parameters in Tables 1 and
2. The amplitude varies as a function of azimuth and
angle of incidence. These changes are more apparent
if the amplitude data are displayed as a polar plot (Fig-
ure 2a). It is not obvious from equation 8 how a particu-
lar parameter impacts the AVOAz. Figure 2b and 2c
shows the separate AVA and AVAz responses. The
AVAz response is sinusoidal, with the magnitude of
the sinusoids increasing as a function of angle of inci-
dence. The next section, “Amplitude variation with azi-
muth for transverse anisotropic media with a horizontal
symmetry axis,” shows that by rewriting the P-wave re-
flectivity solely as a function of azimuth, it becomes
more obvious how the different parameters impact
the amplitude.

Amplitude variation with azimuth for transverse
anisotropic media with a horizontal symmetry
axis

To understand the AVAz response, the HTI Rüger
equation 9 is rewritten in the form of the Fourier series

Table 1. Parameters used to generate the anelliptic
model.

Layer VP (m∕s) VS (m∕s) ρ (kg∕m3) εðvÞ δðvÞ γ

1 3800 1900 2450 0 0 0

2 4152 2100 2550 −0.0349 −0.1157 0.125

Figure 1. Synthetic gathers generated using the HTI Rüger equation 8 based on elastic models listed in Tables 1 and 2. Synthetic
gather (a) is generated with anelliptical anisotropy, whereas synthetic gather (b) is generated with elliptical anisotropy. Both have
the same S-wave anisotropy. To emphasize the azimuthal variations within the common offsets, the data are displayed with an
alternating yellow and gray background that corresponds to the common offset panels.
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Rðϕ; θÞ ¼ r0ðθÞ þ
X∞
n¼1

rnðθÞ cosðnðϕ − ϕnðθÞÞÞ: (13)

The FCs describing each sinusoid are the magnitude
rnðθÞ and the phase ϕnðθÞ, both varying as a function
of the incidence angle. The azimuthal reflectivity at a
particular angle of incidence θ is the superposition of
a series of sinusoids weighted by factor rn of period
n and phase delayed by phase terms ϕn. Only the
n ¼ 0, 2, and 4 magnitude weighting terms are nonzero,
and thus equation 13 simplifies to

Rðϕ; θÞ ¼ r0ðθÞ þ r2ðθÞ cosð2ðϕ − ϕ2ðθÞÞÞ
þ r4ðθÞ cosð4ðϕ − ϕ4ðθÞÞÞ; (14)

with magnitudes

r0ðθÞ ¼ A0 þ B0 sin2 θ þ C0 sin2 θ tan2 θ; (15)

r2ðθÞ ¼
1
2
Bani sin2θ þ

ΔεðvÞ

4
sin2 θ tan2 θ; (16)

r4ðθÞ ¼
ΔηðvÞ

16
sin2 θ tan2 θ; (17)

and phase ϕnðθÞ ¼ ϕsym.
The HTI P-wave AVAz reflectivity is simply the sum

of three sinusoids of periodicity n ¼ 0, 2, and 4, whose
magnitudes are governed by equations 15–17 and
phase-delayed ϕsym. Figure 3 shows the appropriately
weighted sinusoids calculated for the azimuthal data
for the incidence angle centered at 40° from Figure 2.
The zeroth-order FC magnitude (equation 15) introdu-
ces a bias based on the AVO trend and has the same
form as the isotropic AVO equation 1. The parameters
A0, B0, and C0 given by

A0 ¼ Aiso; B0 ¼ Biso þ
1
2
Bani;

and C0 ¼ Ciso þ
3
16

ΔεðVÞ −
1
16

ΔδðVÞ (18)

are modified from the isotropic case (equations 2–4) by
the presence of the anisotropy.

The parameter ηðvÞ (Tsvankin, 2001), defined as

ηðvÞ ¼ εðvÞ − δðvÞ

1þ 2δðvÞ
; (19)

Table 2. Parameters used to generate the elliptical
model.

Layer VP (m∕s) VS (m∕s) ρ (kg∕m3) εðvÞ δðvÞ γ

1 3800 1900 2450 0 0 0

2 3929 2100 2550 −0.2143 −0.2143 0.125

Figure 2. (a) The amplitude versus angle of incidence and azimuth, (b) AVA, and (c) AVAz of a synthetic gather generated using
the Rüger equation 8 based on the parameters in Table 1. In the AVA display (b), the data points are color coded by azimuth. Note
that the amplitude systematically varies about the average AVA trend line. The sinusoidal AVAz response (c) is displayed with the
incidence angle displayed in color.
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describes the anellipticity. The n ¼ 4 magnitude (equa-
tion 17) is controlled by the change in anellipticity ηðvÞ

between layers. The magnitude of the fourth FC
increases as a function of sin2 θ tan2 θ and becomes sig-
nificant at larger angles. This is illustrated in Figure 3.
The model used to generate the AVAz response is anel-
liptic and has a nonzero fourth FC magnitude. Figure 4
contrasts this to the AVAz response generated for a
model with an elliptical anisotropy (Table 2). Rasolofo-
saon (1998) and Gurevich et al. (2011) suggest that
stress-induced anisotropy is elliptical. Because the
anisotropy due to VFI background media is generally
anelliptic (Bakulin et al., 2000), inverting for ηðvÞ could
help determine the source of the anisotropy.

The magnitude of the second FC (equation 16) is a
weighted sum of Bani and ΔεðvÞ. The weights are angle
dependent, and at near angles, the sin2 θ term domi-
nates the sin2 θ tan2 θ term; thus, the magnitude of
the second FC may be approximated as

r2ðθÞ ≈
1
2
Bani sin2 θ: (20)

This approximation provides an alternative method to
estimate Bani instead of inverting equation 9 or 10.

The parameter Bani is simply estimated by observing
the amplitude of the n ¼ 2 sinusoid at some incidence
angle (i.e., substitute r2ðθÞ into equation 20 and solve
for Bani). The phase of the sinusoid is used to estimate
the symmetry axis azimuth ϕsym.

Calculation of azimuthal Fourier coefficients
In the previous section, the Fourier series was writ-

ten in terms of magnitude and phase. In calculating the
FCs, it is more convenient to write the Fourier series as
the weighted sum of cosine and sine waves

Rðϕ; θÞ ¼
X∞
n¼0

ðunðθÞ cosðnϕÞ þ vnðθÞ sinðnϕÞÞ: (21)

For the case of N regularly sampled data, the cosine
coefficients un are calculated using

unðθÞ ¼
1
π

XN
k¼1

Rkðϕ; θÞ cosðnϕÞdϕ; (22)

whereas the sine coefficients vn are calculated using

Figure 3. AVAz for the data from Figure 2 centered at an an-
gle of incidence of 40°. The three sinusoids calculated from
the Fourier analysis are shown as well as the total response.
The n ¼ 0 sinusoid (or DC) shifts the total response up or
down. The second and fourth FCs control the azimuthal re-
sponse. Note that the n ¼ 2 and n ¼ 4 sinusoids are phase
shifted by 30°, which corresponds to ϕsym. For display pur-
poses, the second and fourth sinusoids are shifted by the DC.

Figure 4. The AVAz centered at an angle of incidence of 40°
for the synthetic generated from Table 2. The three sinusoids
calculated from the Fourier analysis are shown as well as the
total response. The fourth FC’s magnitude is zero in this case
because of the elliptical anisotropy; thus, the total AVAz re-
sponse is controlled by n ¼ 2 FCs. For display purposes
the second and fourth sinusoids are shifted by the DC.
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vnðθÞ ¼
1
π

XN
k¼1

Rkðϕ; θÞ sinðnϕÞdϕ (23)

for integer values of n such that n ≥ 0. These parame-
ters can be transformed to magnitude

rnðθÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
nðθÞ þ v2nðθÞ

q
; (24)

and phase

ϕnðθÞ ¼
1
n
arctan

�
vnðθÞ
unðθÞ

�
: (25)

In practice, the workflow for calculating the FCs de-
pends on the geometry of the data. The simplest case is
for regularly sampled data in the azimuth, such as the
output of an azimuthally sectored migration. If neces-
sary, the seismic data are transformed from offset to
angle of incidence for each azimuth sector. Then, the
data are grouped by angle of incidence. For each inci-
dence angle, equations 22 and 23 are used to calculate
the angle-dependent azimuthal FCs. The magnitude and
phase can, in turn, be calculated using equations 24 and
25. This is done for each common depth point location
and time sample.

The data migrated using a common offset vector
(COV) (Cary, 1999; Vermeer, 2002) approach are irregu-
larly sampled in the azimuth and offset domains. For the
case of irregularly sampled data, least-squares inversion
of equation 21 can be performed to obtain the FCs. To
accurately estimate each sinusoid, there should be at
least four data points per period. This sometimes can
be challenging for the n ¼ 4 FC, particularly for azimu-
thally migrated data. For COV-migrated data, the azimu-
thal sampling increases as a function of offset, so
typically, the sampling is adequate to estimate the
fourth FC. To build up sufficient fold to perform this
inversion in a stable fashion, the data must be binned
over some angle range, centered on the angle for which
the analysis is to be performed. This binning introduces
smearing, which adversely impacts the analysis. This
can be mitigated by performing some form of bin-cen-
tering operation.

The estimate of the azimuth is complicated by phase
wrapping. Phase wrapping occurs due to the periodicity
of the sine and cosine functions. It gets worse as n gets
larger. The possible range of the arctan function in equa-
tion 25 is 180°. If n ¼ 2, the possible range is reduced to
90°, and forn ¼ 4, the possible range is only 45°. This com-
plicates the interpretation of the phase of the fourth FC.

Amplitude variation with offset and azimuth for
generally anisotropic media

The Fourier series equation 14 is derived for the case
of HTI media. These results can be extended to a gen-
eral anisotropy by rearranging the Pšenčik and Martins

(2001) linearized P-wave AVAz reflectivity (equation 1)
in terms of sine and cosine functions, or

Rðϕ; θÞ ¼ u0ðθÞ þ v2ðθÞ sinð2ϕÞ þ u2ðθÞ cosð2ϕÞ
þ v4ðθÞ sinð4ϕÞ þ u4ðθÞ cosð4ϕÞ; (26)

where

u0ðθÞ ¼ w00 þw10 sin2 θ þw20 sin2 θ tan2 θ; (27)

v2ðθÞ ¼ w11 sin2 θ þw21 sin2 θ tan2 θ; (28)

u2ðθÞ ¼ w12 sin2 θ þw22 sin2 θ tan2 θ; (29)

v4ðθÞ ¼ w23 sin2 θ tan2 θ; (30)

and

u4ðθÞ ¼ w24 sin2 θ tan2 θ: (31)

The wij coefficients are linear combinations of the
weak anisotropy parameters defined by Pšenčik and
Gajewski (1998) and given in Appendix A. By using
transforms 24 and 25, equation 26 can be rewritten in
terms of magnitude and phase so it has the same form
as equation 14. To a linear approximation, the P-wave
AVAz for all forms of anisotropy can be written either as
equation 14 or 26. Due to reciprocity, the general P-
wave AVAz expression is an even function with respect
to azimuth. The fact that there are just three nonzero
magnitude terms arises from the linearization used in
the derivation. In an orthorhombic modeling study,
Sayers and Dean (2001) report some energy on the sixth
FC, but this energy was much smaller than the n ¼ 0, 2,
and 4 FCs, suggesting this approximation is adequate in
practice.

Without going into the exact details of the expres-
sions for the coefficients, there are several observations
that can be made. For all types of anisotropy, the n ¼ 0
FC (equation 27) has the same form as the three-
term AVO expression (equation 1). The presence of
anisotropy changes the definitions of the A, B, and C
parameters from their isotropic forms. The phase of
the fourth FC is independent of the angle of incidence.
This is due to the fact that the n ¼ 4 FCs (equations 30
and 31) are functions of a single variable, w23 and w24,
respectively, and when substituted into equation 25, re-
sults in a phase expression that is independent of the
incidence angle. In contrast, then ¼ 2FCs (equations 28
and 29) have a more complex form that results in a
phase expression for the second FC, which is depen-
dent on the angle of incidence.

The type of anisotropy governs the form and values
of the individual FCs. For example, in layered HTI me-
dia that share the same symmetry azimuth, the phase of
the second and fourth FC is ϕsym. In layered HTI media
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in which the symmetry planes change across the inter-
face, the phase of the second FC is dependent on the
angle of incidence and is different from the phase of
the fourth FC. Thus, it should be possible by observing
the phase of the second and fourth FCs as function of
incidence angle to determine if the layered HTI media
has a consistent symmetry axis, and thus the applicabil-
ity of the HTI Rüger equation.

The sine and cosine weights (equations 27–31) pa-
rameterizing the Fourier series (equation 26) are a func-
tion of nine parameters, including the density. In the
case of general anisotropy, there are a total of 22 param-
eters (21 stiffness coefficients and density), and thus,
the general inverse problem is underdetermined. This
is true for orthorhombic and simpler symmetries. For
this reason, it is advantageous to introduce rock physics
models to reduce the number of unknown parameters.

Linear slip theory
LS theory (Schoenberg, 1980) provides a framework

to model the effective medium of a fractured rock. The
total compliance of the rock S is the sum of the back-
ground compliance Sb plus the compliance due to the
fractures Sf . The fractures are modeled as an imper-
fectly bonded interface in which the traction is continu-
ous but the displacement might be discontinuous. The
displacement discontinuity is linearly related to the
traction. For example, the displacement discontinuity
normal to the fracture is proportional to the normal
stress. This proportionality constant is the normal frac-
ture compliance BN . The vertical and horizontal frac-
ture compliances BV and BH are defined in a similar
fashion. If the fractures are rotationally invariant, such
as penny-shaped fractures, then the vertical and hori-
zontal fracture compliances are the same. In an iso-
tropic background, a vertical penny-shaped fracture
gives rise to HTI anisotropy (Schoenberg and Sayers,
1995). When BV and BH are different, the fracture is
asymmetric. This is probably the more realistic case
(Far, 2011), but it requires an additional parameter add-
ing complexity. Asymmetric fractures give rise to ortho-
rhombic anisotropy.

The actual fracture compliance values depend on the
size and the spatial distribution of the fractures (Wor-
thington, 2007). Measurements of these values have
been performed at different scales including laboratory
measurements (Pyrak-Nolte et al., 1990), borehole
sonic (Lubbe and Worthington, 2006), vertical seismic
profiles (Worthington and Hudson, 2000), and micro-
seismic (Baird et al., 2013). Verdon and Wüstefeld
(2013) summarize the published values of the normal
to tangential fracture compliance values.

Rather than working with fracture compliances, it is
more intuitive to work with the dimensionless fracture
weakness parameters. The normal, vertical, and hori-
zontal fracture weakness parameters are, respectively,

δN ¼ ðc11bBNÞ∕ð1þ c11bBNÞ; (32)

δV ¼ ðc44bBV Þ∕ð1þ c44bBV Þ; (33)

and

δH ¼ ðc66bBHÞ∕ð1þ c66bBHÞ; (34)

where cijb are the background stiffness coefficients. In
the case of an isotropic backgroundmedium, with back-
ground P- and S-wave velocities α and β, then c11b ¼
ρα2 and c44b ¼ ρβ2. The fractional weakness parameters
range from 0 to 1. In the case in which fracture weak-
nesses are zero, the fracture has no influence on the
total compliance. The notation is potentially confusing
because the fracture weakness parameters and Thom-
sen parameters use δ. However, the weaknesses always
have a subscript.

Single set of vertical fractures in isotropic back-
ground media

Following Appendix B, the linearized AVAz reflectivity
for the case of a single set of vertical fractureswith normal
ϕsym in an isotropic background media may be written as
the Fourier series equation 14 with magnitudes

r0ðθÞ ¼ A0 þ B0 sin2 θ þ C0 sin2 θ tan2 θ; (35)

r2ðθÞ ¼
1
2
ḡðΔδV − χ̄ΔδNÞsin2θ

þ 1
2
ḡðḡ − 1ÞΔδN sin2 θ tan2 θ; (36)

r4ðθÞ ¼
ḡ

8
ðΔδH − ḡΔδNÞsin2 θ tan2 θ; (37)

and phase ϕnðθÞ ¼ ϕsym. The parameter g ¼ β2∕α2 ¼
c44b∕c33b , while χ ¼ 1 − 2g. These results are consistent
with Shaw and Sen (2006). In general, VFI media are
orthorhombic, but in the special case of rotationally
invariant fractures, the media are HTI. The parameters de-
scribing the average AVO (equation 35) have the same
form as the isotropic definitions (equations 2–4) but are
perturbed by the fracture weakness parameters and are
listed in Appendix B.

The azimuthal response is controlled by the n ¼ 2
and n ¼ 4 FCs (equations 36 and 37). Under the VFI
assumption, the presence of sinusoids with periodicity
of n ¼ 2 and n ¼ 4 implies that the media is fractured.
The n ¼ 2 and n ¼ 4 FCs controlling the azimuthal re-
sponse have the same form as the HTI case (equa-
tions 16 and 17). Based on the similarity of forms,
the anisotropic gradient in VFI media, given by

BVFI
ani ¼ ḡðΔδV − χ̄ΔδNÞ; (38)

is a weighted difference of the vertical and normal frac-
ture weakness parameters. As such, the possibility
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exists that the anisotropic gradient BVFI
ani is zero even in

the case of a fractured medium. The scaled magnitude
of the fourth FC,

κ ¼ ḡðΔδH − ḡΔδNÞ; (39)

is a weighted difference of the horizontal and normal
fracture weakness parameters and may be used in com-
bination with the anisotropic gradient BVFI

ani to detect the
presence of fractures. Because BVFI

ani and κ are weighted
differences, their interpretation is more complicated
than if they were a function of a single fracture param-
eter. An incompressible fluid filling the fracture lowers
the normal fracture weakness but does not influence
the tangential fracture weakness (Bakulin et al., 2000).
In the extreme case, when δN goes to zero,BVFI

ani is propor-
tional to the vertical fracture weakness. The weight χ is
always smaller than one, so δV is weighted more than δN.

Bakulin et al. (2000) show that to a linear approxima-
tion ηðvÞ ¼ 2 gðδV − gδNÞ so that, in the case of rotation-
ally invariant fractures, κ is a measure of anellipticity. In
the case of asymmetric fractures, the ratio of the hori-
zontal to vertical compliances BH∕BV controls the rel-
ative magnitudes of the second and fourth FCs. The HTI
parameters in Tables 1 and 2 are generated from the VFI
models detailed in Tables 3 and 4 assuming rotationally
invariant fractures. Note that the only difference be-
tween the two models is the value of the normal frac-
ture weakness. This one difference gives rise to
different AVO classes and AVAz responses. Figure 5

Figure 5. The AVAz response generated by
the anisotropic Zoeppritz equation (Schoen-
berg and Protázio, 1992) from the parameters
in Table 3 and a BH∕BV ratio of 2. Note the
increase in the magnitude of the fourth FC
compared to Figure 2c.

Table 3. Fracture weakness parameters used to
generate the anelliptic model (Table 1).

Layer VP0 (m∕s) VS0 (m∕s) ρ (kg∕m3) δN δT

1 3800 1900 2450 0 0

2 4200 2100 2550 0.09091 0.2

Table 4. Fracture weakness parameters used to
generate the elliptical model (Table 2).

Layer VP0 (m∕s) VS0 (m∕s) ρ (kg∕m3) δN δT

1 3800 1900 2450 0 0

2 4200 2100 2550 0.5 0.2
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shows the AVAz response generated by the anisotropic
Zoeppritz equation (Schoenberg and Protázio, 1992)
from the orthorhombic model specified by the param-
eters in Table 3, using a BH∕BV ratio of 2. Note the in-
crease in the magnitude of the fourth FC compared to
Figure 2c.

The anisotropic gradient may be estimated from the
magnitude of the second FC by rearranging equation 20
to solve explicitly for the anisotropic gradient:

Bani ≈
2

sin2θ
r2ðθÞ: (40)

The Bani estimate is simply a scaled version of the mag-
nitude of the second FC calculated at some incidence
angle. Ideally, only azimuthal data from one incident an-
gle are used to calculate the magnitude using equa-
tions 24, 28, and 29, but in practice, a range of angles
must be chosen to obtain sufficient sampling and fold.
Estimating Bani using equation 40 becomes unstable at
small angles. At larger angles, the full-offset equation 16
or 36 should be used. Estimating the magnitude using
equation 24 involves taking a square root, introducing
the same sign and azimuth ambiguity as the near-offset
Rüger equation.

The estimation of the anisotropic gradient using
equation 40 is illustrated with a northwest Louisiana
3D data set for which the main target is the Haynesville.
The Haynesville Formation is a black organic-rich shale
of Upper Jurassic age, which overlies the Smackover
Formation. Sena et al. (2011) and Castillo et al. (2014)
describe this data set in greater detail.

Figure 6 shows a comparison of the anisotropic gra-
dient estimated using equation 40 versus equation 10 on
an inline through one of the wells in this data set. The
azimuthal FC estimate (equation 40) is only analyzing
how the data from a 20° to a 30° incidence angle varies
as a function of azimuth. The near-offset Rüger estimate
(equation 10) analyzes how the data vary as function
of offset and azimuth using incidence angles from 0°
to 30°. The two anisotropic gradient estimates show
anomalies at the top and base of the Haynesville at
the well location. The base of the Haynesville is easier
to pick because of the large contrast in impedance
going from the Haynesville shale into the Smackover.
The Haynesville top is approximately 20 ms above
the base.

The estimate from the second FC (equation 40) is rel-
atively simple to quality control. Figure 7 shows the azi-
muthal data displayed at the well location for incidence

Figure 6. Panel (a) shows the anisotropic gradient estimated from the magnitude of the second FC, whereas panel (b) shows the
anisotropic gradient estimated by inverting equation 10. The estimate based on the second FC uses incidence angles from 20° to
30°, whereas the estimate based on equation 10 uses angles from 0° to 30°. The two figures share many similarities and some
differences. Both show anomalies at the top and base of the Haynesville. The top is approximately 20 ms above the base of
the Haynesville horizon.
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angles from 20° to 25° at the zone of interest. Figure 7a
shows the AVAz decomposed into its constituent sinus-
oids. The magnitude of the second FC can be roughly
estimated by just measuring the distance between the
peak and the trough and dividing by two (Figure 7b).
Similarly, the azimuth is estimated by just observing
the phase of the trough of the sinusoid. If the aniso-
tropic gradient is positive, then this phase corresponds
to the isotropy plane azimuth. If Bani is negative, this
corresponds to the symmetry axis azimuth. In this case,
having assumed that the anisotropic gradient is posi-
tive, the magnitude is 0.051 and the isotropy plane azi-
muth is −80° from north. Determining these parameters
for the near-offset Rüger equation (equation 10) is more
difficult because this involves solving a four-parameter
nonlinear inversion problem.

To reduce the impact of the azimuth ambiguity, the
isotropy plane azimuth is typically displayed on a seis-
mic horizon in which the sign of Bani is assumed to be
invariant. Further, the azimuth is only shown when the
size of the anisotropic gradient exceeds some thresh-
old. This reduces the chance of the azimuth switching
its orientation 90° as Bani goes to zero and the chance of
a polarity reversal increases. The magnitude and azimu-
thal information is used to construct the glyph display
shown in Figure 8. The size of the glyphs is proportional
to the anisotropic gradient (magnitude), whereas the
orientation is controlled by the isotropy plane azimuth.

The long axis of the glyphs shows the fracture strike
and is consistent with the east–west principal stress
in the area (Sena et al., 2011).

Figure 8. The size of each glyph is proportional to the aniso-
tropic gradient, and its orientation is determined by the isot-
ropy plane azimuth. Their directions are roughly parallel to
the dominant east–west stress orientation. The anisotropic
gradient is displayed in color using a similar scale as in Fig-
ure 6. The red arrow points to the north.

Figure 7. The AVAz data plotted for incidence angles from 20° to 25° at the well location and the base of Haynesville. Note that
even for this limited angle range, there is dispersion introduced due to the AVA. The data are displayed as colored squares, with the
color representing the incidence angle. The AVA dispersion is evident as vertical bars for the analyzed sectors at −60, −30, 0°, 30°,
60°, and 90°. Panel (a) shows the best fit n ¼ 0, 2, and 4 sinusoids along with their sum for the average incidence angle of 22.5°.
Panel (b) shows only the n ¼ 2 sinusoid. The isotropy plane azimuth at −80° north corresponds to the azimuth of the trough of the
sinusoid. The half-distance between the peak and trough corresponds to the magnitude of 0.051.
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Single set of vertical fractures in transverse
anisotropic media

In the preceding section, the background media is
assumed to be isotropic; yet, the Haynesville shale is
known to be VTI (Sondergeld and Rai, 2011). This last
section explores the influence of a TI background on
the AVAz response due to fractures. Appendix C derives
the P-wave AVAz reflectivity for VFTI media, under the
assumption that each fracture has the same normal
ϕsym. The result of this derivation is again the Fourier
series described by equation 14. Due to the assumption
of the aligned fractures, the phase ϕ2 ¼ ϕ4 ¼ ϕsym. The
n ¼ 0magnitude in VFTI media is once again described
by the AVO equation

r0ðθÞ ¼ A0 þ B0 sin2 θ þ C0 sin2 θ tan2 θ; (41)

where the parameters A0, B0, and C0 (equations C-7–C-
9) are similar to VTI media but with an additional per-
turbation due to the fracture weakness parameters.

The azimuthal response is controlled by the second
and fourth FCs in which the magnitude of the second
FC is expressed as

r2ðθÞ ¼
1
2
BVFTI
ani sin2θ

þ 1
2
ð1þ 2ε̄Þḡðḡ − 1ÞΔδN sin2 θ tan2 θ: (42)

Similar to the VFI case, the VFTI anisotropic gradient

BVFTI
ani ¼ ḡ

�
ΔδV −

ð1þ 2γ̄Þ
ð1þ 2ε̄Þ ðχ̄ þ δ̄ÞΔδN

�
: (43)

is a weighted difference of the vertical and normal frac-
ture weaknesses. In the VFTI case, the weights are
modified by the background TI anisotropy with
g ¼ β2∕α2 ¼ c44b∕c33b and χ ¼ 1 − 2g. The weights are
functions of the average parameters across the inter-
face. This complicates the interpretation of the aniso-
tropic gradient because the weights depend on the
background media.

The fourth FC magnitude

r4ðθÞ ¼
1
8
ð1þ 2ε̄ÞḡðΔδH − ḡΔδNÞsin2 θ tan2 θ (44)

has the same basic form as in VFI media (equation 37),
but it is scaled by an additional factor dependent on the
P-wave anisotropy of the background media. Large pos-
itive values of ε̄, such as found in shales, amplify the
fourth FC. Note that each of the VFTI FCs reduces to
their VFI equivalents in the case that ε̄ ¼ δ̄ ¼ γ̄ ¼ 0.

The linearized VFTI AVOAz reflectivity inversion
problem for fractional interface properties is underde-
termined for the same reason that the VTI AVO inver-
sion problem is underdetermined. Excluding the
fracture weakness parameters, there are five parame-
ters controlling the average AVO (equation 41), but
there are only three parameters that can be determined.

Figure 9. The anisotropic model used to generate the VFTI synthetic (Figure 13). The P-wave, S-wave, and density logs are
what would be typically used to perform AVO modeling. The normal, vertical, and horizontal fracture weaknesses describe
the fracture.
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Modeling vertical fractures in transverse aniso-
tropic media

The impact of a TI background media on the AVAz re-
sponse is studied by performing forward modeling fol-
lowing Downton (2014). A 1D isotropic layered earth
model is constructed in a similar fashion as in an AVO
modeling study, and then, TI anisotropy is determined
and incorporated in a manner analogous to Lin and
Thomsen (2013). For each layer, LS theory is used to con-
struct the anisotropic stiffness matrix due to fractures.

The synthetic is generated using a convolutional model-
ing scheme in which the P-wave reflectivity is calculated
using the Zoeppritz equation or some linearized approxi-
mation of it. The synthetic is compared to the seismic.
Differences in the AVO response are used to update
the background TI anisotropy whereas differences in
the AVAz response are used to update the fracturemodel.

For the well log shown in Figure 6, only the P-wave,
S-wave, and density logs are available. These logs are
used to construct the background model shown in

Figure 10. The (c) AVA and (d) AVAz of the (a) real and (b) VFI synthetic data plotted for the base of the Haynesville event. Note
the real data have a different AVA trend than do the synthetic data. The blue AVA trend corresponds to the blue event on the
synthetic data (a), whereas the red corresponds to the real data. In panels (c and d), the data plotted as squares correspond to the
real data, whereas the triangles correspond to the synthetic data.

Figure 11. The (c) AVA and (d) AVAz of the (a) VFI and (b) VFTI synthetic data plotted for the base of the Haynesville event. Note
how the introduction of the TI background media changes the AVA trend. The red AVA trend corresponds to the red event in panel
(a), whereas the blue AVA trend corresponds to the blue event in panel (b). In panels (c and d), the VFI synthetic data are plotted as
squares whereas the VFTI synthetic data are plotted as triangles.
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Figure 9. To match the AVAz response shown in Fig-
ures 6 and 7, it is assumed that the Haynesville is frac-
tured. For simplicity, a single set of rotationally
invariant vertical fractures is assumed. Initially, speci-
fying fractures with a tangential fracture weakness of
δT ¼ 0.2 and ratio BN∕BT ¼ 0.1 results in the synthetic
shown in Figure 10. This figure compares the synthetic
to the real data AVO and AVAz at the base of Hay-
nesville.

The fact that the synthetic data exhibit a slightly dif-
ferent AVO trend to the real data is used to determine
the VTI parameters following the work of Lin and
Thomsen (2013). The Smackover Formation is assumed
to be isotropic, whereas the Haynesville shale above is

assumed to be VTI. Different combinations of δ and ε
were tested to find the best match to the real data.
Due to the near-offset nature of this data set (30° maxi-
mum angle), the AVO testing was most sensitive to δ
with the best match being δ ¼ 0.2. The data exhibited
little sensitivity to ε, so the observation of Vernik and
Liu (1997) that ε > δ was used to specify ε ¼ 0.3. Last,
the empirical relationship γ ≈ −0.01þ 0.96ε, by Wang
(2002), is used to specify the value of γ. Although γ
does not influence the AVO trend, it is ultimately re-
quired in the calculation of BVFTI

ani . Figure 11 shows
how the introduction of the TI anisotropy alters the
AVO and AVAz synthetic response. The biggest impact
is on the AVO. The peak-to-trough AVAz is changed lit-

Figure 12. The (a) AVA and (b) AVAz of the real and VFTI synthetic data are plotted for the base of the Haynesville event as
squares and triangles, respectively. Note that after the introduction of the TI background media, the VFTI synthetic (the blue AVA
curve) shares the same AVA trend as the real data (the red AVA curve).
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tle between the two models. Figure 12 shows that, after
introducing the background TI anisotropy, the VFTI
synthetic and real data share the same AVO trend.

Next, different combinations of δT and BN∕BT were
tested to obtain a better match to the AVAz of the real
seismic. Initially, the value of δT was held constant and
the BN∕BT ratio was varied. It was possible to match the
AVAz of the real data, but this required unreasonably
large values of δN . Better results were obtained by vary-
ing δT and holding BN∕BT to its initial value. Figure 13
shows a good match for the AVO and AVAz using
δT ¼ 0.5. Figure 9 summarizes the parameters used
in the construction of this synthetic. The parameters
chosen in this manner are nonunique, but they prove
that it is possible to model the real seismic response
using geologically plausible parameters. The determina-
tion of these parameters is essentially a bootstrapping
process. The fact that the AVOAz can be separated into
AVO and AVAz is used to help build the model. The frac-
ture parameters primarily control the AVAz, whereas
the TI parameters control the AVO.

Discussion
The emphasis of this paper is that the AVAz can be

quantified in terms of the magnitude and phase of the
different FCs. This parameterization is purely descrip-
tive. Interpretation of these parameters depends on the
anisotropic symmetry class or fracture system. It is pos-
sible to invert for fracture parameters (Downton and
Roure, 2010), but this makes a strong assumption about
the form of the anisotropy.

If anisotropy is assumed to be due to VFI, it is also
possible to invert for an unambiguous estimate of the

isotropy plane azimuth (Downton et al., 2011). How-
ever, the method requires information from the fourth
FC and hence far-offset data. The Haynesville example
in this paper is thought to be VFTI and only includes
angles up to 30°, so it is not suitable for this analysis.

Conclusion
P-wave AVOAz analysis can be separated into two

parts: AVO and AVAz analyses. It is possible to detect
anisotropy and fractures by just looking at the AVAz
part. The AVAz may be modeled as a Fourier series
or the sum of a series of sinusoids, with each sinusoid
being characterized by its magnitude and phase. The FC
parameterization is parsimonious. Only sinusoids with
periods n ¼ 0, 2, and 4 are needed to describe the AVAz
for the case of general anisotropy. The fact that only
even terms are needed is because of reciprocity. The
FC parameterization is descriptive. It is possible to
graph these sinusoids and estimate their amplitude
and phase by hand, so it is easy to get an intuitive feel
as to whether the estimated parameters are reasonable.

To understand the significance of the parameters,
some anisotropic or fracture system must be assumed.
The cases of HTI, VFI, and VFTI media were studied. In
each case, if the media has the same mirror planes, the
phase of the second and fourth FCs is the same. If the
phase is different, it suggests that this assumption is vio-
lated. In all the studied media, the magnitude of the sec-
ond FC can be used to approximate the anisotropic
gradient and give results similar to inverting the near-
offset Rüger equation. Interpretation of the anisotropic
gradient changes depending on the type of media. In
HTI media, the anisotropic gradient is a weighted differ-

Figure 13. The (c) AVA and (d) AVAz of (a) the real and (b) the updated VFTI synthetic data are plotted for the base of the
Haynesville event as squares and triangles, respectively. Note that after the fracture parameters are adjusted, the two share similar
AVA and AVAz trends.
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ence of Thomsen parameters and is a measure of
anisotropy. In VFI and VFTI media, the anisotropic gra-
dient is a weighted difference of fracture parameters
whose weights depend on the background media. Thus,
the anisotropic gradient is a measure of the fracture
parameters whose interpretation changes, depending
on the background media.

In HTI media, the magnitude of the fourth FC can be
used to study anellipticity. In VFI and VFTI media, the
magnitude of the fourth FC is also a weighted difference
of the fracture parameters, and hence, it is an indicator
of fractures. In orthorhombic media, due to asymmetric
vertical fractures in a background isotropic media, the
ratio of the horizontal to vertical compliances controls
the relative size of the fourth FC, the size of which can
be much larger than in an HTI medium. In VFTI media,
the background P-wave anisotropy also influences the
magnitude of the fourth FC.
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Appendix A

Amplitude-variation-offset-and-azimuth weights for
general anisotropy

The weights wij parameterizing the FCs for general
anisotropy (equations 27–31) are

w00 ¼ Aiso þ
1

2α2
Δðα2εzÞ; (A-1)

w10 ¼ Biso þ
1

4α2
½Δðα2δxÞ − 8Δðβ2γxÞ�

þ 1

4α2
½Δðα2δyÞ − 8Δðβ2γyÞ� −

1

2α2
Δðα2εzÞ; (A-2)

w20 ¼ Ciso þ
1

16α2
½3Δðα2εxÞ þ 3Δðα2εyÞ þ Δðα2δzÞ�;

(A-3)

w11 ¼
1

2α2
½Δðα2χzÞ − 4Δðβ2ε45Þ�; (A-4)

w12 ¼
1

4α2
½Δðα2δxÞ − 8Δðβ2γxÞ − ðΔðα2δyÞ − 8Δðβ2γyÞÞ�;

(A-5)

w21 ¼
1

4α2
½Δðα2ε16Þ þ Δðα2ε26Þ�; (A-6)

w22 ¼
1

4α2
½Δðα2εxÞ − ðΔα2εyÞ�; (A-7)

w23 ¼
1

8α2
½Δðα2ε16Þ − Δðα2ε26Þ�; (A-8)

w24 ¼
1

16α2
½Δðα2εxÞ þ Δðα2εyÞ − Δðα2δzÞ�; (A-9)

and they are expressed in terms of the weak anisotropy
parameters defined by Pšenčik and Gajewski (1998) in
equation 17b. Equation 27 is evaluated with reference to
some background P-wave velocity α and S-wave veloc-
ity β. By choosing these background velocities to be the
average background velocities of the two media gener-
ating the reflectivity, the definitions of A, Biso, and Ciso
are consistent with equations 2–4 calculated using the
isotropic velocities.

Appendix B

Amplitude-variation-offset-and-azimuth in vertical
fractures in an isotropic media

Appendix B outlines the derivation of AVAz reflectiv-
ity expression for a single set of VFI background
medium. The stiffness matrix for a single vertical frac-
ture perpendicular to the x-axis in a background iso-
tropic medium is (Schoenberg and Douma, 1988)
given as

C¼

2
666664

Mð1−δN Þ λð1−δNÞ λð1−δN Þ 0 0 0
λð1−δNÞ Mð1−χ2δNÞ λð1−χδN Þ 0 0 0
λð1−δNÞ λð1−χδNÞ Mð1−χ2δN Þ 0 0 0

0 0 0 μ 0 0
0 0 0 0 μð1−δV Þ 0
0 0 0 0 0 μð1−δHÞ

3
777775
;

(B-1)

where χ ¼ 1 − 2g and g ¼ μ∕M ¼ c44b∕c33b . The param-
eter g can also be expressed in terms of the background
P-wave velocity α and the S-wave velocity β as
g ¼ β2∕α2, which for the isotropic background medium
is directionally invariant. The azimuthal Fourier series
described by equations 27–31 is calculated by substitut-
ing the density normalized stiffness values obtained
from matrix B-1 into the wij coefficients (equa-
tions A-1–A-9) using the background isotropic P- and
S-wave velocities as the reference velocities. The result-
ing expressions are then rearranged as the truncated
Fourier series:

Rðϕ; θÞ ¼ r0ðθÞ þ r2ðθÞ cosð2ϕÞ þ r4ðθÞ cosð4ϕÞ: (B-2)
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Matrix B-1 is written so that the normal of the fracture is
the x-axis. To generalize this to any orientation, the
fracture may be rotated anticlockwise ϕsym about the
z-axis by performing a change of variables ϕ →
ðϕ − ϕsymÞ so that equation B-2 becomes

Rðϕ; θÞ ¼ r0ðθÞ þ r2ðθÞ cosð2ðϕ − ϕsymÞÞ
þ r4ðθÞ cosð4ðϕ − ϕsymÞÞ; (B-3)

which has the same form as equation 14. In this case,
the magnitudes are

r0ðθÞ ¼ A0 þ B0 sin2θ þ C0 sin2 θ tan2 θ; (B-4)

r2ðθÞ ¼
1
2
ḡðΔδV − χ̄ΔδNÞsin2θ

þ 1
2
ḡðḡ − 1ÞΔδN sin2 θ tan2 θ; (B-5)

r4ðθÞ ¼
ḡ

8
ðΔδH − ḡΔδNÞsin2 θ tan2 θ; (B-6)

and phase ϕnðθÞ ¼ ϕsym. The terms describing the AVA
equation B-4

A0 ¼ Aiso −
1
4
χ̄2ΔδN; (B-7)

B0 ¼ Biso þ
ḡ

2
ΔδV −

χ̄

4
ΔδN; (B-8)

and

C0 ¼ Ciso −
ḡ

8
ΔδH −

1
8
ð3ḡ2 − 4ḡþ 2ÞΔδN (B-9)

are perturbed from the isotropic equations 2–4 by the
fracture weakness parameters. The velocities used in
calculating the isotropic reflectivity are the isotropic
background velocities.

Appendix C

Amplitude-variation-offset-and-azimuth in vertical
fractures in a transverse isotropic media

Appendix C outlines the derivation of AVAz reflectiv-
ity expression for a single set of VFTI background
medium. The density-normalized stiffness matrix for
a single set of parallel vertical fractures perpendicular
to the x-axis in a background TI media is (Schoenberg
and Helbig, 1997)

A

¼

2
666666664

a11b ð1−δN Þ a12b ð1−δN Þ a13b ð1−δN Þ 0 0 0

a12b ð1−δN Þ a11b

�
1−

a212b
a211b

δN
�

a13b

�
1−a12b

a11b
δN

�
0 0 0

a13b ð1−δN Þ a13b

�
1−a12b

a11b
δN

�
a33b

�
1−

a213b
a11b a33b

δN
�

0 0 0

0 0 0 a44b 0 0
0 0 0 0 a44b ð1−δV Þ 0
0 0 0 0 0 a66b ð1−δH Þ

3
777777775

(C-1)

with the constraint a12b ¼ a11b − 2a66b . The density-nor-
malized background stiffness coefficients a33b and a44b
are used to define the background P-wave velocity α ¼ffiffiffiffiffiffiffiffi
a33b

p
and S-wave velocity β ¼ ffiffiffiffiffiffiffiffi

a44b
p

used in the deriva-
tion. Similar to the VFI derivation, the variables
g ¼ a44b∕a33b and χ ¼ 1 − 2g are defined. The matrix
C-1 is rewritten in terms of Thomsen’s parameters by
substituting

f ¼ a11b∕a33b ¼ ð1þ 2εÞ; (C-2)

ζ ¼ a12b∕a33b ¼ f − 2d; (C-3)

ξ ¼ a13b∕a33b ≈ χ þ δ; (C-4)

and

d ¼ a66b∕a33b ¼ ð1þ 2γÞg; (C-5)

into matrix C-1 as

A

¼a33b

2
666666664

f ð1−δN Þ ζð1−δN Þ ξð1−δNÞ 0 0 0

ζð1−δN Þ f

�
1− ζ

f 2
2δN

�
ξ
�
1− ζ

f
δN

�
0 0 0

ξð1−δN Þ ξ
�
1− ζ

f
δN

� �
1− ξ2

f
δN

�
0 0 0

0 0 0 g 0 0
0 0 0 0 gð1−δV Þ 0
0 0 0 0 0 dð1−δHÞ

3
777777775
:

(C-6)

At this point, the derivation proceeds similar to the VFI
derivation (Appendix B), substituting the density-nor-
malized stiffness matrix C-6 into the wij coefficients
(equations A-1–A-9), simplifying and dropping the
nonlinear terms. The result is written as a Fourier series
represented by equation 14 with phase ϕ2 ¼ ϕ4 ¼ ϕsym.
The magnitude of the n ¼ 0 FC is described by the AVO
equation 15 with

A0 ¼ AVTI −
ðχ̄ þ δ̄Þ2
4ð1þ 2ε̄ÞΔδN; (C-7)

B0 ¼ BVTI þ
1
2
ðḡΔδV −

1
2
ðχ̄ þ δ̄ÞΔδNÞ; (C-8)

and
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C0 ¼ CVTI −
1
8
ð1þ 2ε̄ÞðḡΔδH þ ð3ḡ2 − 4ḡþ 2ÞΔδNÞ:

(C-9)

The parameters A0, B0, and C0 are perturbed from the
VTI case by the fracture weakness parameters. The VTI
background and the fractures modify the average AVO
trend compared to the isotropic case. The fractures
lower the vertical P-wave velocity and, hence, change
the impedance contrast at the interface. Large positive
δ̄ values amplify this change.

The magnitude of the second FC is

r2ðθÞ ¼
1
2
BVFTI
ani sin2θ

þ 1
2
ð1þ 2ε̄Þḡðḡ − 1ÞΔδN sin2 θ tan2 θ (C-10)

with

BVFTI
ani ¼ ḡðΔδV −

ð1þ 2γ̄Þ
ð1þ 2ε̄Þ ðχ̄ þ δ̄ÞΔδNÞ: (C-11)

Lastly, the magnitude of the fourth FC is

r4ðθÞ ¼
1
8
ð1þ 2ε̄ÞḡðΔδH − ḡΔδNÞsin2 θ tan2 θ: (C-12)

Each of the magnitude expressions for the n ¼ 0, 2, and
4 sinusoids reduce to the VFI form in the case
that ε̄ ¼ δ̄ ¼ γ̄ ¼ 0.
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