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SUMMARY
Analysis of time-lapse data is performed on migrated seismic images, which represent the spatial and
time-lapse variability of the medium’s reflectivity. The process of migration effectively rotates the wavelet
so that it is normal to the imaged reflectors. Processes used in 4D reservoir analysis such as deconvolution,
inversion and warping need to follow the structure of the data. The traditional 1D (vertical) convolutional
approach does not honour this directivity. For this reason, we introduce a wave equation based approach
which provides an effective platform for structurally consistent reservoir analysis. This includes
applications such as wavelet extraction, warping and 4D time-strain inversion.
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Introduction 

A migrated seismic image represents the spatial variability of the earth’s reflectivity. The process of 
migration effectively rotates the seismic wavelet so that it is normal to the imaged reflectors. In the 
presence of complex geologies and steep dips, the wavelet, when viewed vertically, is stretched 
according to the structural dip of the image. 
 
Time-lapse analysis methods that attempt to invert changes observed on the migrated images of base 
and monitors for velocity and impedance generally assume vertical propagation (1D convolution). In 
dipping and complex media, this assumption no longer holds, as time-strain changes propagate normal 
to the reflectors (Thore et al., 2012; Audebert and Agut, 2014).  
 
We reintroduce the concept of seismic image waves, originally proposed by Hubral et al. (1996), to 
define an image wave equation. The wavefield solution of this wave equation allows us to perform 
kinematic and amplitude inversions of time-lapse data on dipping and complex structures. The 
method is applicable to pre- and post-stack data and is easily combined with existing time and 
amplitude inversion methods. 

Theory 

Seismic data is recorded at the surface of the 
acquisition survey where amplitude variation with 
respect to time is measured. Imaging algorithms 
map the energy recorded on the surface back to the 
subsurface locations which generated the 
reflections. The wavelet is then everywhere normal 
to the reflectors. Figure 1 shows schematically the 
wavelets for a simple dipping event before and 
after imaging. Conceptually, pre-imaging, the 
wavelets are aligned with the time axis, while post-
imaging they are orthogonal to the reflector and 
depth variations are stretched by the dip.  
 
Multiple attempts have been made to remove the effect of this stretch. In a coloured inversion 
(Lancaster and Whitcombe, 2000) context, Lazaratos and David (2009) apply the shaping operators 
pre-imaging. More recently Cherrett (2013) proposed a frequency-wavenumber approach for 
modelling and inversion; this method assumes a constant velocity. 
 
From a time-lapse perspective, as pointed out by Thore et al. (2012) and Audebert and Agut (2014), 
4D changes propagate in the direction normal to the reflectors. This limits the applicability of 1D 
post-imaging methods and points towards pre-imaging approaches such as time-lapse (4D) full 
waveform inversion (FWI), as proposed by Asnashaari et al. (2011). FWI would of course be ideal, 
but it is computationally expensive and difficult to control as it operates on pre-imaging data. 
 
Our solution lies mid-way between the complex pre-imaging and simplistic post-imaging paradigms. 
We reintroduce the concept of a seismic image wave (Hubral et al., 1996), by positing that a seismic 
image follows a wave equation of the form 
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where ),,( zyxx  is the space coordinate vector,   is a time-like coordinate, )(xc  is the velocity 

of the medium,   is the reflection angle, and );( xI  is the seismic image wavefield associated with 
this reflection angle, i.e., a common-angle seismic image. 

 
Figure 1 The seismic wavelet for pre-imaging 
(left) and post-imaging (right) data. 
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Figure 2 A dipping reflector and the direction of 
orthogonal time (left). The corresponding gather along 
the orthogonal time axis (right). 

Figure 3 Wavelets for a flat (blue) 
and a dipping (red) event, 
extracted along the traditional 
vertical time (top) and along the 
orthogonal time (bottom). 

 
We derive Equation 1 using the cross-correlation imaging principle. This relationship is not new to 
the seismic literature: it has existed for a long time in different forms. Typically, the Fourier 
representation is used, as for example in Sava and Fomel (2006). Mosher et al. (1996) derive a similar 
relation for a common-angle time migration scheme, and Zhang and Sun (2009) use it to remove low 
frequency artefacts from reverse-time migration in what is commonly known as the ‘Laplacian’ 
process. 
 
As with any wave equation, a wavefield solution is computed by defining initial and boundary 
conditions. In our implementation we set the zero time of the seismic image wavefield to the input 
seismic image )(xoI  

.)()0;( xx oII   (2)

Then we solve );( xI for an arbitrary range of   using methods such as finite-differences or pseudo-
spectral schemes. 
 
By definition, the   axis is 
orthogonal to the wavefield which 
encompasses imaged reflectors. It 
therefore captures physical changes in 
a structurally consistent way. This 
axis serves as our domain of analysis 
for 4D effects. To emphasize the 
orthogonality property and to 
discriminate   from the vertical time, 
we refer to this axis as orthogonal 
time. Figure 2 shows a cartoon 
demonstrating this concept. 
 
Wavelet extraction  

Before turning to 4D analysis we illustrate the use of the 
orthogonal time axis in the context of wavelet extraction. We 
start by imaging two simple linear events, one flat, and the other 
dipping by 20o. Both events are convolved with the same 
wavelet. After imaging we extract the wavelets from migrated 
data, first along the traditional vertical time axis (after depth-to-
time conversion of the PSDM image); and secondly along the 
orthogonal time axis generated with the proposed method. 

Figure 3 shows all four wavelets obtained. The top image 
superposes the two wavelets obtained with the 1D convolutional 
approach. The extracted wavelets differ since the dip of the 
structure is not accounted for with this method. A 1D 
convolutional inversion with a stationary wavelet is biased by 
this effect, as it effectively sees the wavelet change with dip. 
The lower part of Figure 3 shows the two wavelets (flat event 
and dipping event) we extract along the orthogonal time axis. 
The wavelets are the same, showing that inversion along this 
direction can be done with a single stationary wavelet. 
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Figure 4 A synthetic dataset 
composed of four dipping 
layers. (a) The base dataset. 
(b) The monitor dataset, 
generated by applying 
positive and negative 5m 
shifts in the vertical direction. 
(c) The estimated normal 
displacements; they correctly 
match theoretical values. (d) 
The difference between base 
and monitor datasets. (e) The 
difference after applying the 
estimated shifts. 

 
Time-shift and time-strain analysis 

In Figure 4 we construct a synthetic test data with four dips and we apply vertical shifts of plus or 
minus five metres to all events. The shifts extracted along the orthogonal axis are correctly estimated 
matching theoretical values i.e. the vertical displacement multiplied by the cosine of the dip angle. 
 
Figure 5 shows a realistic synthetic seismic example, where the monitor data is injected with a small 
4D velocity change, inducing the time-shift. We then use the image wave equation to generate the 
orthogonal time axis which is used for time-shift and -strain analysis. Reservoir analysis algorithms 
such as kinematic or amplitude inversions can now be performed along this dimension. This can be 
done on full stacks or on pre-stack angle gathers. Figure 6 shows the results for the estimated time-
shifts using the traditional vertical as well as orthogonal time. Using the traditional vertical time 
method the changing reflector dips with depth induce an unphysical time-shift gradient effect. This 
happens because the process is not following the propagation wave-front consistently. Using the 
orthogonal axis the time-shift attribute appears more homogenous and aligned with the reflectors’ 
directions. This effect has an impact on the time-strain attribute (Figure 7): For the vertical case, the 
strain attribute indicates a false velocity change below deeper dipping events. By contrast, the time-
strain obtained along orthogonal time correctly identifies the location of the velocity change on the 
shallower (flat) event. This demonstrates that 1D convolutional analysis can potentially cause false 
interpretations. 

Conclusions 

In complex non-flat structures, imaging and reservoir processing algorithms designed to analyse 4D 
effects must honour the direction of energy propagation normal to the dips. Our wave equation based 
approach, utilizing the orthogonal time axis, provides an effective way to use existing 4D analysis 
techniques, pre- or post-stack. The method is relatively simple and fast to implement, cheaper than 
FWI, and more general than existing stationary techniques in frequency-wavenumber domain. 
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Figure 5 Base and monitor 
datasets (left and middle). 
The monitor dataset is 
generated by inducing a 
velocity change within the 
area of the oval to give the 
4D difference on the right. 

 
Figure 6 Estimated 4D time-shift, using the 
traditional vertical time (left) and using 
orthogonal time (right). 

 
Figure 7 Estimated 4D time-strain, using the 
traditional vertical time (left) and using 
orthogonal time (right). 
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