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Summary  

This paper is an attempt to fill the technology gap existing between pure P- and PS-wave imaging. Full 
wavefield extrapolation techniques are well developed for P-wave and RTM has been now available for 
almost a decade. Conversely, ray based migration algorithms are still the workhorse for converted-wave 
(PS-wave) depth imaging. Here, we introduce a new converted-wave anisotropic RTM, using a low-rank 
decomposition of mixed-domain space-wavenumber propagators for quasi-P and quasi-S waves. These 
operators are formal integral solutions of the pure-mode wave equations which guarantee stable and 
dispersion-free time extrapolation for coarse time steps in anisotropic, heterogeneous media. The pure-
mode extrapolators are attractive for both PS-wave structural imaging and velocity analysis. An ocean 
bottom cable synthetic example illustrates the effectiveness of low-rank PS-wave RTM when compared 
against state-of-the-art Gaussian beam and finite difference RTM algorithms. 

Introduction 

Multicomponent Kirchhoff migration remains the workhorse for converted-wave (PS-wave) depth 
imaging. Recently, Casasanta and Gray (2014) extended Gaussian-beam migration (GBM) to PS-wave 
imaging. However, neither full elastic nor PS-wave reverse-time migration (RTM) have seen widespread 
use in practice, despite promising research over the last decade (Sun et al., 2006; Cheng et al. 2014). This 
is at least in part because popular finite difference (FD) solvers for both the elastic wave equation and 
(quasi-P and quasi-S, or qP and qS) wave equations suffer from both computational and algorithmic 
shortcomings. 

From a computational standpoint, a fourth order FD stencil imposes either: dense grid spacing for 
non-aliased slow S-wave extrapolation; or small time steps for stable fast P-wave propagation (Soubaras 
and Zhang, 2008). These constraints significantly increase the computational cost of both full elastic and 
PS-wave RTM compared to P-wave RTM.  

From an algorithmic standpoint, anisotropic elastic wave-extrapolators support the propagation of 
coupled P- and S-wave modes which can be decoupled using a generalization of the Helmoltz vector 
decomposition (Yan and Sava, 2011). On a realistic 3D-survey this procedure is I/O intensive, as the 
operators involved are space-variant. Although more efficient implementations are emerging (Cheng and 
Fomel, 2014), elastic wave mode separation still assumes accurate knowledge of the elastic-coefficient 
tensor, which is unlikely in early stages of depth imaging projects. Failure in wavefront separation will 
increase the amount of intra-modal cross-talk noise, possibly to the point of questioning the advantages of 
full-wavefield imaging over ray-based methods.  

 For anisotropic P-wave RTM, the standard propagator is a FD solution of a pseudo-acoustic wave 
equation for transverse isotropic or orthorhombic media with arbitrarily oriented symmetry axis. In such 

formulation, S-wave velocity along the symmetry axis is set to zero )0( 0 SV , ensuring stable P-wave 
propagation in an energy bounded system as long as anisotropy parameters satisfy   . Any residual S-
wave energy is generally weak and easy to remove before or after imaging. The analogous solution for 
anisotropic S-wave FD propagators is not practical because the energy constraint for the pseudo-acoustic 

S-wave extrapolator requires     (Zhang et al., 2011), which is not realistic for typical rock properties.  

In this paper, we propose using mixed-domain (space/wavenumber) operators (Wards et al., 2008). 
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These spectral operators implement analytical integral solutions of the scalar wave equations (Etgen and 
Brandsberg-Dahl, 2009; Fowler et al., 2010). These are suitable for PS-wave structural imaging and 
velocity analysis because they propagate pure-mode, dispersion-free qP- and qS-wavefields, and they are 
stable for large time steps, even (though impractical) beyond the Nyquist limit (Fowler et al., 2010). Further, 
the original space-wavenumber content of the wavefields is approximated to a desired accuracy by a 
lowrank decomposition (Fomel et al., 2013) which makes the wave-extrapolation feasible and accurate for 
practical application. We have implemented a PS-wave RTM using mixed-domain extrapolators based on 
exact dispersion relation in TI media. We present an ocean bottom cable (OBC) synthetic example to 
illustrate the effectiveness of this low-rank PS-wave RTM when compared against state of the art Gaussian 
beam (GBM) and pseudo-acoustic FD RTM algorithms in heterogeneous TTI media. 

 
 

Method 

Let ),( tp x  satisfy a scalar (P or S) wave equation in an inhomogeneous anisotropic medium described by 

its phase velocity ),( kxV , which depends on space x and wave vectork . The wavefield at the next time 
step tt  can be approximated by the mixed domain operator (Wards et al., 2008) 

,),(),( ),,( tPedttp ti kkx kx  

         (1) 

where P(k,t) is the spatial Fourier transform of the wavefield ),( tp x at time step t  and ),,( tkx  is the 
mixed-domain phase function. In the high-frequency limit and for a smooth phase velocity function, a first 
order Taylor expansion approximates tVt T  kkxxkkx ),(),,(  (Fomel et al., 2013). The recursion in 

equation 1 is unconditionally stable for constant or smoothly varying velocity models (Ying and Sun,2014). 
However, an analysis like that of Etgen (1994) is needed to assess the stability of equation 1 for 
complicated subsurface models. Finally, two complex-valued one-step operators in equation 1 can be 
combined to obtain the real-valued two-step operator (Etgen and Brandsberg-Dahl, 2009; Soubaras and 

Zhang, 2008) The computational cost for a straightforward application of equation 1 is )( 2
xNO , where xN is 

the total size of the three-dimensional x grid. For fixed t , a lowrank r approximation decomposes the 
wave extrapolation matrix into a separated representation with desired tolerance  (Fomel et al., 2013): 
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Using representation 2, the computation in equation 1 corresponds to the evaluation of rNM  inverse 

FFTs with a cost of )log( xx NMNO per time step, where r is generally a small number for the oscillatory 
kernel in equation 2. Differently from SVD, lowrank decomposition evaluates a set of N representative 
spatial location (rows) and M representative wavenumbers (columns) without requiring knowledge of the 
whole matrix in equation 2.  

(a)                                              (b) 

 
Figure 1: Mixed-domain P- (a) and SV- (b) lowrank extrapolation snapshots in a 
constant 3D TI medium. VP0/ VS0 =2.41, ε=.25, δ=.01, ϑ=300,	φ=00

. 
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 Scalar PS-wave RTM requires the forward and backward time extrapolation of P- and S-wavefields 
injected at source and recording locations respectively. To this purpose we have designed mixed-domain 
P- and SV-wave matrices using equation 2 and the exact formulation for phase velocity ),( kxV in a TI 
medium (Casasanta and Gray 2014): 
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where  and   are Thomsen parameters and 
2
0

2
01 PS VVf  depends on qP- and qSV-wave velocities. The 

sign of the square root gives the qP- (+) or the qSV- (-) wave phase velocity. The normal cckk )(0
T

n   and 

radial 00 nr kkk  wavenumbers are the k projection parallel and orthogonal to the symmetry axis c. 
Figure 1 shows (a) qP- and (b) qSV-wavefield snapshots computed using a two-step lowrank wave 
extrapolator in a constant TI medium. The time-step size is ∆t=5 ms and the spatial grid sizes in (x, y, z) are 
all ∆x=20 m for both qP- and qSV-wave extrapolation. Since the model is homogeneous, the rank is 1 for 
the lowrank decomposition. The qP-wavefield slices are anelliptical, and the qSV-wavefield accurately 
produces the triplication in the wave surface. Neither qP- nor qSV-wavefield contains coupled modes.  

 

Example 

We discuss image quality and computational performance achieved by lowrank PS-wave RTM using a 
2D OBC synthetic dataset recorded on a sloping seafloor at approximately 1.2 km depth, with shots near 
the sea surface. Shot and receiver sampling are 25 m and 100 m, respectively. The subsurface structure 
is complex, including high shallow 5~00 SP VV  and a salt body with rough topography. The input data 
spectrum was limited to 20 Hz. The grid spacings in (x, y, z) were equal. However, we used different 
grids to propagate the qSV- and qP-wavefields (∆xS=12.5 m and ∆xP=2∆xS) as well as different time steps 
(∆tS=2∆tP). In different experiments, we varied the length of the time step ∆tS from 2 ms to 8 ms while 
keeping the rank roughly the same (M=N=18), producing a range of errors in equation 3. Figure 2e-f 
shows the results obtained using the least accurate approximation (i.e., largest error) for the mixed-
domain qP- and qSV-wave matrix W(x,k). These results highlight the areas of most interest and 
challenge: steep TOS left flanks (Figure 2a-c-e) and subsalt reservoir sediments (Figure 2b-d-f). 
 We observed mild amplitude differences compared to the most accurate solution (smallest error) 
whilst the kinematics are essentially unaffected; the computation time gain was approximately a factor of 
two. Our lowrank RTM implementation (Figure 2e-f) generally outperformed the state-of-the art PS-wave 
GBM (Figure 2a-b) and quasi-acoustic FD RTM (Figure 2c-d). The steep shallow top of salt on our 
lowrank RTM (yellow arrows in Figure 2a-c-e) is more evident, although GBM shows cleaner sediments 
because of an imposed maximum-dip limitation of 70o which is missing in both FD and lowrank RTM. 
Conversely, GBM is unable to reproduce all the branches of the subsalt PS-wave propagation, and fails 
to image the deeper sediments as completely as RTM (Figure 2b). In the same area the FD RTM image 
(Figure 3d) is not as complete as the lowrank RTM image (Figure 3f). In fact, as we mentioned before, 
the qSV FD RTM extrapolator requires   , which introduces an error in the S-wavefield kinematics 
away from the symmetry axis. This error is most evident on the steep shallow salt flanks and deeper 
subsalt sediments.  

Conclusions 

 We have presented a novel PS-wave RTM implementation based on a lowrank approximation of 
the space-wavenumber mixed-domain wavefield extrapolator. Compared to FD RTM, the algorithm is 
attractive for scalar PS-wave imaging and velocity analysis because: (1) it is dispersion-free, with greater 
accuracy at high wavenumbers; (2) it is stable for large time steps, even beyond the Nyquist limit; (3) it 
propagates qP- and qS-waves with exact kinematics; (4) it offers direct control on the accuracy-efficiency 
trade-off by controlling the rank of the approximation in equation 3. We speculate that RTM using lowrank 
wavefield extrapolation can become a technology of choice for high-fidelity PS-wave imaging. 
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Figure 2 OBC 2D synthetic PS-wave migration: CBM (a-b), FD RTM (c-d) and lowrank one-step RTM 
(e-f). (a-c-e): steep TOS left flanks. (b-d-f): subsalt reservoir sediments. The low-rank RTM results 
shows superior image quality and resolution particularly in the subsalt. 
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